Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 6838 by Tawakalitu. last updated on 30/Jul/16

Find the value of x  4^x  = ((243)/x)

$${Find}\:{the}\:{value}\:{of}\:{x} \\ $$$$\mathrm{4}^{{x}} \:=\:\frac{\mathrm{243}}{{x}} \\ $$

Commented by Yozzii last updated on 31/Jul/16

4^x =((243)/x)  xe^(xln4) =243  (xln4)e^(xln4) =243ln4  ⇒W((xln4)e^(xln4) )=W(243ln4)  ⇒xln4=W(243ln4)  x=((W(243ln4))/(ln4))≈3.14

$$\mathrm{4}^{{x}} =\frac{\mathrm{243}}{{x}} \\ $$$${xe}^{{xln}\mathrm{4}} =\mathrm{243} \\ $$$$\left({xln}\mathrm{4}\right){e}^{{xln}\mathrm{4}} =\mathrm{243}{ln}\mathrm{4} \\ $$$$\Rightarrow{W}\left(\left({xln}\mathrm{4}\right){e}^{{xln}\mathrm{4}} \right)={W}\left(\mathrm{243}{ln}\mathrm{4}\right) \\ $$$$\Rightarrow{xln}\mathrm{4}={W}\left(\mathrm{243}{ln}\mathrm{4}\right) \\ $$$${x}=\frac{{W}\left(\mathrm{243}{ln}\mathrm{4}\right)}{{ln}\mathrm{4}}\approx\mathrm{3}.\mathrm{14} \\ $$

Commented by Tawakalitu. last updated on 31/Jul/16

i really appreciate.

$${i}\:{really}\:{appreciate}.\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com