Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 115516 by bobhans last updated on 26/Sep/20

Find the supremum and the infimum  of (x/(sin x)) on the interval (0, (π/2) ]

$${Find}\:{the}\:{supremum}\:{and}\:{the}\:{infimum} \\ $$$${of}\:\frac{{x}}{\mathrm{sin}\:{x}}\:{on}\:{the}\:{interval}\:\left(\mathrm{0},\:\frac{\pi}{\mathrm{2}}\:\right] \\ $$

Commented by john santu last updated on 26/Sep/20

infimum y = lim_(x→0)  (x/(sin x)) = 1  supremum f((π/2)) =(π/2)

$${infimum}\:{y}\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}}{\mathrm{sin}\:{x}}\:=\:\mathrm{1} \\ $$$${supremum}\:{f}\left(\frac{\pi}{\mathrm{2}}\right)\:=\frac{\pi}{\mathrm{2}} \\ $$

Answered by TANMAY PANACEA last updated on 26/Sep/20

y=(x/(sinx))  (dy/dx)=((sinx−xcosx)/(sin^2 x))    for max\min  (dy/dx)=0   so x=tanx  (d^2 y/dx^2 )=((sin^2 x(cosx−cosx+xsinx)−(sinx−xcosx)(2sinxcosx))/(sin^4 x))  (d^2 y/dx^2 )=((xsin^3 x−2sin^2 xcosx+2xsinxcos^2 x)/(sin^4 x))  now putting x=tanx in (d^2 y/dx^2 )  ((d^2 y/dx^2 ))_(x=tanx)  =((((sin^4 x)/(cosx))−2sin^2 xcosx+2sin^2 xcosx)/(sin^4 x))  ((d^2 y/dx^2 ))_(x=tanx) =secx>0   when x∈(0,(π/2)]  wait...

$${y}=\frac{{x}}{{sinx}} \\ $$$$\frac{{dy}}{{dx}}=\frac{{sinx}−{xcosx}}{{sin}^{\mathrm{2}} {x}} \\ $$$$ \\ $$$${for}\:{max}\backslash{min}\:\:\frac{{dy}}{{dx}}=\mathrm{0}\:\:\:{so}\:{x}={tanx} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\frac{{sin}^{\mathrm{2}} {x}\left({cosx}−{cosx}+{xsinx}\right)−\left({sinx}−{xcosx}\right)\left(\mathrm{2}{sinxcosx}\right)}{{sin}^{\mathrm{4}} {x}} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\frac{{xsin}^{\mathrm{3}} {x}−\mathrm{2}{sin}^{\mathrm{2}} {xcosx}+\mathrm{2}{xsinxcos}^{\mathrm{2}} {x}}{{sin}^{\mathrm{4}} {x}} \\ $$$${now}\:{putting}\:{x}={tanx}\:{in}\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} } \\ $$$$\left(\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\right)_{{x}={tanx}} \:=\frac{\frac{{sin}^{\mathrm{4}} {x}}{{cosx}}−\mathrm{2}{sin}^{\mathrm{2}} {xcosx}+\mathrm{2}{sin}^{\mathrm{2}} {xcosx}}{{sin}^{\mathrm{4}} {x}} \\ $$$$\left(\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\right)_{{x}={tanx}} ={secx}>\mathrm{0}\:\:\:{when}\:{x}\in\left(\mathrm{0},\frac{\pi}{\mathrm{2}}\right] \\ $$$${wait}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com