Question Number 115516 by bobhans last updated on 26/Sep/20 | ||
$${Find}\:{the}\:{supremum}\:{and}\:{the}\:{infimum} \\ $$$${of}\:\frac{{x}}{\mathrm{sin}\:{x}}\:{on}\:{the}\:{interval}\:\left(\mathrm{0},\:\frac{\pi}{\mathrm{2}}\:\right] \\ $$ | ||
Commented by john santu last updated on 26/Sep/20 | ||
$${infimum}\:{y}\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}}{\mathrm{sin}\:{x}}\:=\:\mathrm{1} \\ $$$${supremum}\:{f}\left(\frac{\pi}{\mathrm{2}}\right)\:=\frac{\pi}{\mathrm{2}} \\ $$ | ||
Answered by TANMAY PANACEA last updated on 26/Sep/20 | ||
$${y}=\frac{{x}}{{sinx}} \\ $$$$\frac{{dy}}{{dx}}=\frac{{sinx}−{xcosx}}{{sin}^{\mathrm{2}} {x}} \\ $$$$ \\ $$$${for}\:{max}\backslash{min}\:\:\frac{{dy}}{{dx}}=\mathrm{0}\:\:\:{so}\:{x}={tanx} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\frac{{sin}^{\mathrm{2}} {x}\left({cosx}−{cosx}+{xsinx}\right)−\left({sinx}−{xcosx}\right)\left(\mathrm{2}{sinxcosx}\right)}{{sin}^{\mathrm{4}} {x}} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\frac{{xsin}^{\mathrm{3}} {x}−\mathrm{2}{sin}^{\mathrm{2}} {xcosx}+\mathrm{2}{xsinxcos}^{\mathrm{2}} {x}}{{sin}^{\mathrm{4}} {x}} \\ $$$${now}\:{putting}\:{x}={tanx}\:{in}\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} } \\ $$$$\left(\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\right)_{{x}={tanx}} \:=\frac{\frac{{sin}^{\mathrm{4}} {x}}{{cosx}}−\mathrm{2}{sin}^{\mathrm{2}} {xcosx}+\mathrm{2}{sin}^{\mathrm{2}} {xcosx}}{{sin}^{\mathrm{4}} {x}} \\ $$$$\left(\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\right)_{{x}={tanx}} ={secx}>\mathrm{0}\:\:\:{when}\:{x}\in\left(\mathrm{0},\frac{\pi}{\mathrm{2}}\right] \\ $$$${wait}... \\ $$ | ||