Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 46697 by KMA last updated on 30/Oct/18

Find the sum of the first nterms   of the G.P 3+1+(1/3)+...and show that  the sum cannot exceed (9/2) however  great n may be.

$${Find}\:{the}\:{sum}\:{of}\:{the}\:{first}\:{nterms}\: \\ $$$${of}\:{the}\:{G}.{P}\:\mathrm{3}+\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}+...{and}\:{show}\:{that} \\ $$$${the}\:{sum}\:{cannot}\:{exceed}\:\frac{\mathrm{9}}{\mathrm{2}}\:{however} \\ $$$${great}\:{n}\:{may}\:{be}. \\ $$

Answered by Joel578 last updated on 30/Oct/18

S_n  = ((a(1 − r^n ))/( 1 − r)) = ((3(1 − ((1/3))^n ))/(1 − (1/3)))         = (9/2)(1 − ((1/3))^n )    lim_(n→∞)  S_n  = lim_(n→∞)  [(9/2)(1 − ((1/3))^n )]                      = (9/2) . lim_(n→∞)  (1 − ((1/3))^n )                      = (9/2)(1 − 0)                      = (9/2)  It is showed that as n goes larger and larger,  its value getting closer to  (9/2) and never exceed (9/2)

$${S}_{{n}} \:=\:\frac{{a}\left(\mathrm{1}\:−\:{r}^{{n}} \right)}{\:\mathrm{1}\:−\:{r}}\:=\:\frac{\mathrm{3}\left(\mathrm{1}\:−\:\left(\frac{\mathrm{1}}{\mathrm{3}}\right)^{{n}} \right)}{\mathrm{1}\:−\:\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$\:\:\:\:\:\:\:=\:\frac{\mathrm{9}}{\mathrm{2}}\left(\mathrm{1}\:−\:\left(\frac{\mathrm{1}}{\mathrm{3}}\right)^{{n}} \right) \\ $$$$ \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{S}_{{n}} \:=\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left[\frac{\mathrm{9}}{\mathrm{2}}\left(\mathrm{1}\:−\:\left(\frac{\mathrm{1}}{\mathrm{3}}\right)^{{n}} \right)\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{9}}{\mathrm{2}}\:.\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{1}\:−\:\left(\frac{\mathrm{1}}{\mathrm{3}}\right)^{{n}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{9}}{\mathrm{2}}\left(\mathrm{1}\:−\:\mathrm{0}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{9}}{\mathrm{2}} \\ $$$$\mathrm{It}\:\mathrm{is}\:\mathrm{showed}\:\mathrm{that}\:\mathrm{as}\:{n}\:\mathrm{goes}\:\mathrm{larger}\:\mathrm{and}\:\mathrm{larger}, \\ $$$$\mathrm{its}\:\mathrm{value}\:\mathrm{getting}\:\mathrm{closer}\:\mathrm{to}\:\:\frac{\mathrm{9}}{\mathrm{2}}\:\mathrm{and}\:\mathrm{never}\:\mathrm{exceed}\:\frac{\mathrm{9}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com