Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 114071 by bobhans last updated on 17/Sep/20

Find the solution set   (√(x^2 −4x−5)) ≥ x

$${Find}\:{the}\:{solution}\:{set}\: \\ $$$$\sqrt{{x}^{\mathrm{2}} −\mathrm{4}{x}−\mathrm{5}}\:\geqslant\:{x} \\ $$

Commented by prakash jain last updated on 17/Sep/20

$$ \\ $$

Commented by bemath last updated on 17/Sep/20

how do you made this graph sir

$${how}\:{do}\:{you}\:{made}\:{this}\:{graph}\:{sir} \\ $$

Commented by prakash jain last updated on 17/Sep/20

From this app only, i was just  checking  steps:  a. insert drawing  b. insert equation and pasted equation 1.  c. from BUILD menu select plot  d. repeated procedure for other equation.  see Q113542.

$$\mathrm{From}\:\mathrm{this}\:\mathrm{app}\:\mathrm{only},\:\mathrm{i}\:\mathrm{was}\:\mathrm{just} \\ $$$$\mathrm{checking} \\ $$$$\mathrm{steps}: \\ $$$${a}.\:\mathrm{insert}\:\mathrm{drawing} \\ $$$$\mathrm{b}.\:\mathrm{insert}\:\mathrm{equation}\:\mathrm{and}\:\mathrm{pasted}\:\mathrm{equation}\:\mathrm{1}. \\ $$$$\mathrm{c}.\:\mathrm{from}\:\mathrm{BUILD}\:\mathrm{menu}\:\mathrm{select}\:\mathrm{plot} \\ $$$$\mathrm{d}.\:\mathrm{repeated}\:\mathrm{procedure}\:\mathrm{for}\:\mathrm{other}\:\mathrm{equation}. \\ $$$$\mathrm{see}\:\mathrm{Q113542}. \\ $$

Commented by bemath last updated on 17/Sep/20

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Answered by bemath last updated on 17/Sep/20

(1) x^2 −4x−5 ≥ 0        (x−5)(x+1) ≥ 0        x ≤ −1 ∪ x≥ 5  (2) check for x = −1    (√((−1)^2 −4(−1)−5)) = (√(5−5)) = 0 ≥−1 (true)  check for x=5   (√(25−20−5)) = 0 ≥ 5 (false)  then solution is x ≤−1

$$\left(\mathrm{1}\right)\:{x}^{\mathrm{2}} −\mathrm{4}{x}−\mathrm{5}\:\geqslant\:\mathrm{0} \\ $$$$\:\:\:\:\:\:\left({x}−\mathrm{5}\right)\left({x}+\mathrm{1}\right)\:\geqslant\:\mathrm{0} \\ $$$$\:\:\:\:\:\:{x}\:\leqslant\:−\mathrm{1}\:\cup\:{x}\geqslant\:\mathrm{5} \\ $$$$\left(\mathrm{2}\right)\:{check}\:{for}\:{x}\:=\:−\mathrm{1} \\ $$$$\:\:\sqrt{\left(−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{4}\left(−\mathrm{1}\right)−\mathrm{5}}\:=\:\sqrt{\mathrm{5}−\mathrm{5}}\:=\:\mathrm{0}\:\geqslant−\mathrm{1}\:\left({true}\right) \\ $$$${check}\:{for}\:{x}=\mathrm{5}\: \\ $$$$\sqrt{\mathrm{25}−\mathrm{20}−\mathrm{5}}\:=\:\mathrm{0}\:\geqslant\:\mathrm{5}\:\left({false}\right) \\ $$$${then}\:{solution}\:{is}\:{x}\:\leqslant−\mathrm{1} \\ $$

Commented by bemath last updated on 17/Sep/20

Commented by bobhans last updated on 17/Sep/20

santuyy

$${santuyy} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com