Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 2052 by Yozzi last updated on 01/Nov/15

Find the solution of the d.e   (sinhx)((dy/dx))^2 +2(dy/dx)−sinhx=0  which satisfies y=0 at x=0.

$${Find}\:{the}\:{solution}\:{of}\:{the}\:{d}.{e} \\ $$$$\:\left({sinhx}\right)\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} +\mathrm{2}\frac{{dy}}{{dx}}−{sinhx}=\mathrm{0} \\ $$$${which}\:{satisfies}\:{y}=\mathrm{0}\:{at}\:{x}=\mathrm{0}. \\ $$

Commented by prakash jain last updated on 01/Nov/15

∫cosh x∙coth x dx  =coth x∙sinh x+∫csch^2 x∙sinh xdx  =coth x∙sinh x+∫csch xdx  =cosh x+ln tanh (x/2)+C

$$\int\mathrm{cosh}\:{x}\centerdot\mathrm{coth}\:{x}\:{dx} \\ $$$$=\mathrm{coth}\:{x}\centerdot\mathrm{sinh}\:{x}+\int\mathrm{csch}^{\mathrm{2}} {x}\centerdot\mathrm{sinh}\:{xdx} \\ $$$$=\mathrm{coth}\:{x}\centerdot\mathrm{sinh}\:{x}+\int\mathrm{csch}\:{xdx} \\ $$$$=\mathrm{cosh}\:{x}+\mathrm{ln}\:\mathrm{tanh}\:\frac{{x}}{\mathrm{2}}+{C} \\ $$

Commented by Rasheed Soomro last updated on 04/Nov/15

  Find the solution of the d.e  (sinhx)((dy/dx))^2 +2(dy/dx)−sinhx=0  which satisfies y=0 at x=0.  −−−−−−−−−−++++−−−−−−−  Let  (dy/dx)=u  (sinh x)u^2 +2u−sinh x=0  u=((−2±(√((2)^2 −4(sinh x)(−sinh x))))/(2sinh x))     =((−2±2(√(1+sinh^2 x)))/(2sinh x))     =((−1±cosh x)/(sinh x))       u=((cosh x−1)/(sinh x)) ∣ u=−((1+cosh x)/(sinh x))  u=((cosh x)/(sinh x))−(1/(sinh x))   ∣ u=−((1+cosh x)/(sinh x))  (dy/dx)= coth x−csch x  ∣ (dy/dx)=−(1/(sinh x))−((cosh x)/(sinh x))  y=∫( coth x−csch x)dx ∣ y=−∫(csch x+coth x)dx  y=∫( coth x)dx−∫(csch x)dx ∣ y=−∫(csch x)dx−∫(coth x)dx     =ln∣sinh x∣−ln∣tanh(x/2)∣+C_(−)  ∣ =−ln∣sinh x∣−ln∣tanh(x/2)∣+C  Further evaluation   Suggested by Mr. Yozzi:  y=ln((sinh x)/(tanh (x/2)))+C ∣y=−ln∣(sinh x)(tanh(x/2))∣+C  y=ln{2sinh(x/2)cosh(x/2)×((cosh (x/2))/(sinh(x/2)))}+C∣y=−ln{2sinh(x/2)cosh(x/2)×((sinh (x/2))/(cosh(x/2)))}+C    =ln{2cosh^2 (x/2)}+C  ∣ y=−ln{2sinh^2 (x/2)}+C [C is not defined]      See comment (02−11−2015) by Yozzi for further process.

$$ \\ $$$${Find}\:{the}\:{solution}\:{of}\:{the}\:{d}.{e} \\ $$$$\left({sinhx}\right)\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} +\mathrm{2}\frac{{dy}}{{dx}}−{sinhx}=\mathrm{0} \\ $$$${which}\:{satisfies}\:{y}=\mathrm{0}\:{at}\:{x}=\mathrm{0}. \\ $$$$−−−−−−−−−−++++−−−−−−− \\ $$$${Let}\:\:\frac{{dy}}{{dx}}={u} \\ $$$$\left({sinh}\:{x}\right){u}^{\mathrm{2}} +\mathrm{2}{u}−{sinh}\:{x}=\mathrm{0} \\ $$$${u}=\frac{−\mathrm{2}\pm\sqrt{\left(\mathrm{2}\right)^{\mathrm{2}} −\mathrm{4}\left({sinh}\:{x}\right)\left(−{sinh}\:{x}\right)}}{\mathrm{2}{sinh}\:{x}} \\ $$$$\:\:\:=\frac{−\mathrm{2}\pm\mathrm{2}\sqrt{\mathrm{1}+{sinh}^{\mathrm{2}} {x}}}{\mathrm{2}{sinh}\:{x}} \\ $$$$\:\:\:=\frac{−\mathrm{1}\pm{cosh}\:{x}}{{sinh}\:{x}} \\ $$$$\:\:\:\:\:{u}=\frac{{cosh}\:{x}−\mathrm{1}}{{sinh}\:{x}}\:\mid\:{u}=−\frac{\mathrm{1}+{cosh}\:{x}}{{sinh}\:{x}} \\ $$$${u}=\frac{{cosh}\:{x}}{{sinh}\:{x}}−\frac{\mathrm{1}}{{sinh}\:{x}}\:\:\:\mid\:{u}=−\frac{\mathrm{1}+{cosh}\:{x}}{{sinh}\:{x}} \\ $$$$\frac{{dy}}{{dx}}=\:{coth}\:{x}−{csch}\:{x}\:\:\mid\:\frac{{dy}}{{dx}}=−\frac{\mathrm{1}}{{sinh}\:{x}}−\frac{{cosh}\:{x}}{{sinh}\:{x}} \\ $$$${y}=\int\left(\:{coth}\:{x}−{csch}\:{x}\right){dx}\:\mid\:{y}=−\int\left({csch}\:{x}+{coth}\:{x}\right){dx} \\ $$$${y}=\int\left(\:{coth}\:{x}\right){dx}−\int\left({csch}\:{x}\right){dx}\:\mid\:{y}=−\int\left({csch}\:{x}\right){dx}−\int\left({coth}\:{x}\right){dx} \\ $$$$\:\underset{−} {\:\:={ln}\mid{sinh}\:{x}\mid−{ln}\mid{tanh}\frac{{x}}{\mathrm{2}}\mid+{C}}\:\mid\:=−{ln}\mid{sinh}\:{x}\mid−{ln}\mid{tanh}\frac{{x}}{\mathrm{2}}\mid+{C} \\ $$$${Further}\:{evaluation}\: \\ $$$${Suggested}\:{by}\:{Mr}.\:{Yozzi}: \\ $$$${y}={ln}\frac{{sinh}\:{x}}{{tanh}\:\frac{{x}}{\mathrm{2}}}+{C}\:\mid{y}=−{ln}\mid\left({sinh}\:{x}\right)\left({tanh}\frac{{x}}{\mathrm{2}}\right)\mid+{C} \\ $$$${y}={ln}\left\{\mathrm{2}{sinh}\frac{{x}}{\mathrm{2}}{cosh}\frac{{x}}{\mathrm{2}}×\frac{{cosh}\:\frac{{x}}{\mathrm{2}}}{{sinh}\frac{{x}}{\mathrm{2}}}\right\}+{C}\mid{y}=−{ln}\left\{\mathrm{2}{sinh}\frac{{x}}{\mathrm{2}}{cosh}\frac{{x}}{\mathrm{2}}×\frac{{sinh}\:\frac{{x}}{\mathrm{2}}}{{cosh}\frac{{x}}{\mathrm{2}}}\right\}+{C} \\ $$$$\:\:={ln}\left\{\mathrm{2}{cosh}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}\right\}+{C}\:\:\mid\:{y}=−{ln}\left\{\mathrm{2}{sinh}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}\right\}+{C}\:\left[{C}\:{is}\:{not}\:{defined}\right] \\ $$$$\:\: \\ $$$${See}\:{comment}\:\left(\mathrm{02}−\mathrm{11}−\mathrm{2015}\right)\:{by}\:{Yozzi}\:{for}\:{further}\:{process}. \\ $$

Commented by Yozzi last updated on 01/Nov/15

There′s an error in your evaluation Mr. Soomro.  (√(1+sinh^2 x))=±coshx≠cosh^2 x.  I appreciate the integral  ∫coshxcothxdx that arose however.  Errors could lead one to learning new  things.

$${There}'{s}\:{an}\:{error}\:{in}\:{your}\:{evaluation}\:{Mr}.\:{Soomro}. \\ $$$$\sqrt{\mathrm{1}+{sinh}^{\mathrm{2}} {x}}=\pm{coshx}\neq{cosh}^{\mathrm{2}} {x}. \\ $$$${I}\:{appreciate}\:{the}\:{integral} \\ $$$$\int{coshxcothxdx}\:{that}\:{arose}\:{however}. \\ $$$${Errors}\:{could}\:{lead}\:{one}\:{to}\:{learning}\:{new} \\ $$$${things}. \\ $$

Commented by Rasheed Soomro last updated on 03/Nov/15

THankS for mentioning my calculation mistake.  I am going to correct according to your suggestion.  The integral ∫cosh x coth x dx was derived mistakenly  (The mistake mentioned by you). I think that it was  not correct.

$$\mathcal{TH}{ank}\mathcal{S}\:{for}\:{mentioning}\:{my}\:{calculation}\:{mistake}. \\ $$$${I}\:{am}\:{going}\:{to}\:{correct}\:{according}\:{to}\:{your}\:{suggestion}. \\ $$$${The}\:{integral}\:\int{cosh}\:{x}\:{coth}\:{x}\:{dx}\:{was}\:{derived}\:{mistakenly} \\ $$$$\left({The}\:{mistake}\:{mentioned}\:{by}\:{you}\right).\:{I}\:{think}\:{that}\:{it}\:{was} \\ $$$${not}\:{correct}. \\ $$

Commented by Yozzi last updated on 02/Nov/15

If you go further on simplifying  the first answer you get  y=ln∣((sinhx)/(tanh(x/2)))∣+C  y=ln∣2cosh(x/2)sinh(x/2)×((cosh(x/2))/(sinh(x/2)))∣+C  y=ln∣2cosh^2 (x/2)∣+C  y=0 at x=0  ∴ C=−ln2  ∴y=ln∣2cosh^2 0.5x∣−ln2  y=ln∣(2/2)cosh^2 0.5x∣  y=ln∣cosh^2 0.5x∣  y=2ln∣cosh0.5x∣  coshx>0 ∀x∈R  ∴y=2lncosh0.5x.  The second solution turns out not  to be a solution.  Checking y=2lncosh0.5x.  y^′ =2×((0.5sinh0.5x)/(cosh0.5x))=tanh0.5x  (y^′ )^2 =tanh^2 0.5x  sinhxtanh^2 0.5x+2tanh0.5x−sinhx  =sinhx(−sech^2 0.5x)+2tanh0.5x  =((2sinh0.5xcosh0.5x)/(−cosh^2 0.5x))+2tanh0.5x  =−2tanh0.5x+2tanh0.5x  =0 as required.    The other solution is invalid however.  since ln0 is undefined.

$${If}\:{you}\:{go}\:{further}\:{on}\:{simplifying} \\ $$$${the}\:{first}\:{answer}\:{you}\:{get} \\ $$$${y}={ln}\mid\frac{{sinhx}}{{tanh}\frac{{x}}{\mathrm{2}}}\mid+{C} \\ $$$${y}={ln}\mid\mathrm{2}{cosh}\frac{{x}}{\mathrm{2}}{sinh}\frac{{x}}{\mathrm{2}}×\frac{{cosh}\left({x}/\mathrm{2}\right)}{{sinh}\left({x}/\mathrm{2}\right)}\mid+{C} \\ $$$${y}={ln}\mid\mathrm{2}{cosh}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}\mid+{C} \\ $$$${y}=\mathrm{0}\:{at}\:{x}=\mathrm{0} \\ $$$$\therefore\:{C}=−{ln}\mathrm{2} \\ $$$$\therefore{y}={ln}\mid\mathrm{2}{cosh}^{\mathrm{2}} \mathrm{0}.\mathrm{5}{x}\mid−{ln}\mathrm{2} \\ $$$${y}={ln}\mid\frac{\mathrm{2}}{\mathrm{2}}{cosh}^{\mathrm{2}} \mathrm{0}.\mathrm{5}{x}\mid \\ $$$${y}={ln}\mid{cosh}^{\mathrm{2}} \mathrm{0}.\mathrm{5}{x}\mid \\ $$$${y}=\mathrm{2}{ln}\mid{cosh}\mathrm{0}.\mathrm{5}{x}\mid \\ $$$${coshx}>\mathrm{0}\:\forall{x}\in\mathbb{R} \\ $$$$\therefore{y}=\mathrm{2}{lncosh}\mathrm{0}.\mathrm{5}{x}. \\ $$$${The}\:{second}\:{solution}\:{turns}\:{out}\:{not} \\ $$$${to}\:{be}\:{a}\:{solution}. \\ $$$${Checking}\:{y}=\mathrm{2}{lncosh}\mathrm{0}.\mathrm{5}{x}. \\ $$$${y}^{'} =\mathrm{2}×\frac{\mathrm{0}.\mathrm{5}{sinh}\mathrm{0}.\mathrm{5}{x}}{{cosh}\mathrm{0}.\mathrm{5}{x}}={tanh}\mathrm{0}.\mathrm{5}{x} \\ $$$$\left({y}^{'} \overset{\mathrm{2}} {\right)}={tanh}^{\mathrm{2}} \mathrm{0}.\mathrm{5}{x} \\ $$$${sinhxtanh}^{\mathrm{2}} \mathrm{0}.\mathrm{5}{x}+\mathrm{2}{tanh}\mathrm{0}.\mathrm{5}{x}−{sinhx} \\ $$$$={sinhx}\left(−{sech}^{\mathrm{2}} \mathrm{0}.\mathrm{5}{x}\right)+\mathrm{2}{tanh}\mathrm{0}.\mathrm{5}{x} \\ $$$$=\frac{\mathrm{2}{sinh}\mathrm{0}.\mathrm{5}{xcosh}\mathrm{0}.\mathrm{5}{x}}{−{cosh}^{\mathrm{2}} \mathrm{0}.\mathrm{5}{x}}+\mathrm{2}{tanh}\mathrm{0}.\mathrm{5}{x} \\ $$$$=−\mathrm{2}{tanh}\mathrm{0}.\mathrm{5}{x}+\mathrm{2}{tanh}\mathrm{0}.\mathrm{5}{x} \\ $$$$=\mathrm{0}\:{as}\:{required}. \\ $$$$ \\ $$$${The}\:{other}\:{solution}\:{is}\:{invalid}\:{however}. \\ $$$${since}\:{ln}\mathrm{0}\:{is}\:{undefined}.\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com