Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 56697 by Tawa1 last updated on 21/Mar/19

Find the shortest distance between the lines     L  =  (1, 4, 2) + N(1, 3, 2)   and     r  =  (−1, 1, −1) + λ(1, 2, −1)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{shortest}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{the}\:\mathrm{lines} \\ $$$$\:\:\:\mathrm{L}\:\:=\:\:\left(\mathrm{1},\:\mathrm{4},\:\mathrm{2}\right)\:+\:\mathrm{N}\left(\mathrm{1},\:\mathrm{3},\:\mathrm{2}\right)\:\:\:\mathrm{and} \\ $$$$\:\:\:\mathrm{r}\:\:=\:\:\left(−\mathrm{1},\:\mathrm{1},\:−\mathrm{1}\right)\:+\:\lambda\left(\mathrm{1},\:\mathrm{2},\:−\mathrm{1}\right) \\ $$

Answered by mr W last updated on 21/Mar/19

many methods to solve.    d^2 =[1+N−(−1+λ)]^2 +[4+3N−(1+2λ)]^2 +[2+2N−(−1−λ)]^2   d^2 =(2+N−λ)^2 +(3+3N−2λ)^2 +(3+2N+λ)^2    ...(iii)  ((∂(d^2 ))/∂N)=2(2+N−λ)+2×3(3+3N−2λ)+2×2(3+2N+λ)=0  ⇒14N−5λ+17=0   ...(i)  ((∂(d^2 ))/∂λ)=−2(2+N−λ)−2×2(3+3N−2λ)+2(3+2N+λ)=0  ⇒5N−6λ+5=0   ...(ii)    solve (i) and (ii):  ⇒N=−((77)/(59))  ⇒λ=−((15)/(59))    put this into (iii):  d_(min) ^2 =(((56)/(59)))^2 +(((−24)/(59)))^2 +((8/(59)))^2   ⇒d_(min) =((√(56^2 +24^2 +8^2 ))/(59))=(8/(√(59)))=1.0415

$${many}\:{methods}\:{to}\:{solve}. \\ $$$$ \\ $$$${d}^{\mathrm{2}} =\left[\mathrm{1}+{N}−\left(−\mathrm{1}+\lambda\right)\right]^{\mathrm{2}} +\left[\mathrm{4}+\mathrm{3}{N}−\left(\mathrm{1}+\mathrm{2}\lambda\right)\right]^{\mathrm{2}} +\left[\mathrm{2}+\mathrm{2}{N}−\left(−\mathrm{1}−\lambda\right)\right]^{\mathrm{2}} \\ $$$${d}^{\mathrm{2}} =\left(\mathrm{2}+{N}−\lambda\right)^{\mathrm{2}} +\left(\mathrm{3}+\mathrm{3}{N}−\mathrm{2}\lambda\right)^{\mathrm{2}} +\left(\mathrm{3}+\mathrm{2}{N}+\lambda\right)^{\mathrm{2}} \:\:\:...\left({iii}\right) \\ $$$$\frac{\partial\left({d}^{\mathrm{2}} \right)}{\partial{N}}=\mathrm{2}\left(\mathrm{2}+{N}−\lambda\right)+\mathrm{2}×\mathrm{3}\left(\mathrm{3}+\mathrm{3}{N}−\mathrm{2}\lambda\right)+\mathrm{2}×\mathrm{2}\left(\mathrm{3}+\mathrm{2}{N}+\lambda\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{14}{N}−\mathrm{5}\lambda+\mathrm{17}=\mathrm{0}\:\:\:...\left({i}\right) \\ $$$$\frac{\partial\left({d}^{\mathrm{2}} \right)}{\partial\lambda}=−\mathrm{2}\left(\mathrm{2}+{N}−\lambda\right)−\mathrm{2}×\mathrm{2}\left(\mathrm{3}+\mathrm{3}{N}−\mathrm{2}\lambda\right)+\mathrm{2}\left(\mathrm{3}+\mathrm{2}{N}+\lambda\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{5}{N}−\mathrm{6}\lambda+\mathrm{5}=\mathrm{0}\:\:\:...\left({ii}\right) \\ $$$$ \\ $$$${solve}\:\left({i}\right)\:{and}\:\left({ii}\right): \\ $$$$\Rightarrow{N}=−\frac{\mathrm{77}}{\mathrm{59}} \\ $$$$\Rightarrow\lambda=−\frac{\mathrm{15}}{\mathrm{59}} \\ $$$$ \\ $$$${put}\:{this}\:{into}\:\left({iii}\right): \\ $$$${d}_{{min}} ^{\mathrm{2}} =\left(\frac{\mathrm{56}}{\mathrm{59}}\right)^{\mathrm{2}} +\left(\frac{−\mathrm{24}}{\mathrm{59}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{8}}{\mathrm{59}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{d}_{{min}} =\frac{\sqrt{\mathrm{56}^{\mathrm{2}} +\mathrm{24}^{\mathrm{2}} +\mathrm{8}^{\mathrm{2}} }}{\mathrm{59}}=\frac{\mathrm{8}}{\sqrt{\mathrm{59}}}=\mathrm{1}.\mathrm{0415} \\ $$

Commented by Tawa1 last updated on 22/Mar/19

Wow,  God bless you sir.

$$\mathrm{Wow},\:\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\: \\ $$

Answered by mr W last updated on 23/Mar/19

vector method    normal to L and r:  (1,3,2)×(1,2,−1)=(−7,3,−1)    (1+1,4−1,2+1)=(2,3,3)    (2,3,3)•(−7,3,−1)=−14+9−3=−8    d=((∣−8∣)/(√((−7)^2 +3^2 +(−1)^2 )))=(8/(√(59)))≈1.0415

$${vector}\:{method} \\ $$$$ \\ $$$${normal}\:{to}\:{L}\:{and}\:{r}: \\ $$$$\left(\mathrm{1},\mathrm{3},\mathrm{2}\right)×\left(\mathrm{1},\mathrm{2},−\mathrm{1}\right)=\left(−\mathrm{7},\mathrm{3},−\mathrm{1}\right) \\ $$$$ \\ $$$$\left(\mathrm{1}+\mathrm{1},\mathrm{4}−\mathrm{1},\mathrm{2}+\mathrm{1}\right)=\left(\mathrm{2},\mathrm{3},\mathrm{3}\right) \\ $$$$ \\ $$$$\left(\mathrm{2},\mathrm{3},\mathrm{3}\right)\bullet\left(−\mathrm{7},\mathrm{3},−\mathrm{1}\right)=−\mathrm{14}+\mathrm{9}−\mathrm{3}=−\mathrm{8} \\ $$$$ \\ $$$${d}=\frac{\mid−\mathrm{8}\mid}{\sqrt{\left(−\mathrm{7}\right)^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} +\left(−\mathrm{1}\right)^{\mathrm{2}} }}=\frac{\mathrm{8}}{\sqrt{\mathrm{59}}}\approx\mathrm{1}.\mathrm{0415} \\ $$

Commented by Tawa1 last updated on 24/Mar/19

God bless you sir. I appreciate.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com