Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 52573 by Necxx last updated on 09/Jan/19

Find the relation between p q and r  if one of the root of the equation  px^2 +qx+r=0 is double the other.

$${Find}\:{the}\:{relation}\:{between}\:{p}\:{q}\:{and}\:{r} \\ $$$${if}\:{one}\:{of}\:{the}\:{root}\:{of}\:{the}\:{equation} \\ $$$${px}^{\mathrm{2}} +{qx}+{r}=\mathrm{0}\:{is}\:{double}\:{the}\:{other}. \\ $$

Answered by mr W last updated on 09/Jan/19

px^2 +qx+r=p(x−a)(x−2a)  px^2 +qx+r=p(x^2 −3ax+2a^2 )  ⇒q=−3pa  ⇒r=2pa^2   ⇒r=2p(−(q/(3p)))^2 =((2q^2 )/(9p))  ⇒9pr=2q^2

$${px}^{\mathrm{2}} +{qx}+{r}={p}\left({x}−{a}\right)\left({x}−\mathrm{2}{a}\right) \\ $$$${px}^{\mathrm{2}} +{qx}+{r}={p}\left({x}^{\mathrm{2}} −\mathrm{3}{ax}+\mathrm{2}{a}^{\mathrm{2}} \right) \\ $$$$\Rightarrow{q}=−\mathrm{3}{pa} \\ $$$$\Rightarrow{r}=\mathrm{2}{pa}^{\mathrm{2}} \\ $$$$\Rightarrow{r}=\mathrm{2}{p}\left(−\frac{{q}}{\mathrm{3}{p}}\right)^{\mathrm{2}} =\frac{\mathrm{2}{q}^{\mathrm{2}} }{\mathrm{9}{p}} \\ $$$$\Rightarrow\mathrm{9}{pr}=\mathrm{2}{q}^{\mathrm{2}} \\ $$

Commented by Necxx last updated on 10/Jan/19

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com