Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 207450 by York12 last updated on 15/May/24

Find the relation between m and n for which the following  holds   ((d(y))/(d(x)))∣_(x=n) =(((d(x))/(d(y)))∣_(y=m) )^(−1)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{relation}\:\mathrm{between}\:{m}\:\mathrm{and}\:{n}\:\mathrm{for}\:\mathrm{which}\:\mathrm{the}\:\mathrm{following}\:\:\mathrm{holds} \\ $$$$\:\frac{{d}\left({y}\right)}{{d}\left({x}\right)}\mid_{{x}={n}} =\left(\frac{{d}\left({x}\right)}{{d}\left({y}\right)}\mid_{{y}={m}} \right)^{−\mathrm{1}} \\ $$

Answered by mr W last updated on 15/May/24

Commented by mr W last updated on 15/May/24

(dy/dx)∣_(x=n) =tan θ  (dx/dy)∣_(y=m) =tan φ  ((dx/dy)∣_(y=m) )^(−1) =(1/(tan φ))=tan ϕ  (dy/dx)∣_(x=n) =((dx/dy)∣_(y=m) )^(−1)   ⇒tan θ=tan ϕ  ⇒θ=ϕ  if y=f(x) is a strictly monotonic  function, then P  and Q must be  the same point, i.e.  m=f(n).  if y=f(x) is not a strictly monotonic  function, then the relation between  n und m is not unique.

$$\frac{{dy}}{{dx}}\mid_{{x}={n}} =\mathrm{tan}\:\theta \\ $$$$\frac{{dx}}{{dy}}\mid_{{y}={m}} =\mathrm{tan}\:\phi \\ $$$$\left(\frac{{dx}}{{dy}}\mid_{{y}={m}} \right)^{−\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{tan}\:\phi}=\mathrm{tan}\:\varphi \\ $$$$\frac{{dy}}{{dx}}\mid_{{x}={n}} =\left(\frac{{dx}}{{dy}}\mid_{{y}={m}} \right)^{−\mathrm{1}} \\ $$$$\Rightarrow\mathrm{tan}\:\theta=\mathrm{tan}\:\varphi \\ $$$$\Rightarrow\theta=\varphi \\ $$$${if}\:{y}={f}\left({x}\right)\:{is}\:{a}\:{strictly}\:{monotonic} \\ $$$${function},\:{then}\:{P}\:\:{and}\:{Q}\:{must}\:{be} \\ $$$${the}\:{same}\:{point},\:{i}.{e}.\:\:{m}={f}\left({n}\right). \\ $$$${if}\:{y}={f}\left({x}\right)\:{is}\:{not}\:{a}\:{strictly}\:{monotonic} \\ $$$${function},\:{then}\:{the}\:{relation}\:{between} \\ $$$${n}\:{und}\:{m}\:{is}\:{not}\:{unique}. \\ $$

Commented by York12 last updated on 15/May/24

thank you sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com