Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 215958 by Tawa11 last updated on 22/Jan/25

Find the only function that satisfy  the expression below:         ((dy/dx))^2   =   (d^2 y/dx^2 )

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{only}\:\mathrm{function}\:\mathrm{that}\:\mathrm{satisfy} \\ $$$$\mathrm{the}\:\mathrm{expression}\:\mathrm{below}: \\ $$$$\:\:\:\:\:\:\:\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{\mathrm{2}} \:\:=\:\:\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} } \\ $$

Answered by Ghisom last updated on 23/Jan/25

(y′)^2 =y′′  u=y′  u^2 =u′  u=−(1/(x+C_1 ))     [from experience]  u′=(1/((x+C_1 )^2 ))=u^2   y′=−(1/(x+C_1 )) ⇒  <y=−∫(dx/(x+C_1 ))=C_2 −ln ∣x+C_1 ∣

$$\left({y}'\right)^{\mathrm{2}} ={y}'' \\ $$$${u}={y}' \\ $$$${u}^{\mathrm{2}} ={u}' \\ $$$${u}=−\frac{\mathrm{1}}{{x}+{C}_{\mathrm{1}} }\:\:\:\:\:\left[\mathrm{from}\:\mathrm{experience}\right] \\ $$$${u}'=\frac{\mathrm{1}}{\left({x}+{C}_{\mathrm{1}} \right)^{\mathrm{2}} }={u}^{\mathrm{2}} \\ $$$${y}'=−\frac{\mathrm{1}}{{x}+{C}_{\mathrm{1}} }\:\Rightarrow \\ $$$$<{y}=−\int\frac{{dx}}{{x}+{C}_{\mathrm{1}} }={C}_{\mathrm{2}} −\mathrm{ln}\:\mid{x}+{C}_{\mathrm{1}} \mid \\ $$

Commented by Tawa11 last updated on 03/Feb/25

Thanks sir.  I really apprecuate.

$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{really}\:\mathrm{apprecuate}. \\ $$

Answered by mr W last updated on 25/Jan/25

say (dy/dx)=p  p^2 =(dp/dx)  ∫(dp/p^2 )=∫dx  −(1/p)=x+C_1   (dy/dx)=p=−(1/(x+C_1 ))  ∫dy=−∫(dx/(x+C_1 ))  ⇒y=−ln ∣x+C_1 ∣+C_2

$${say}\:\frac{{dy}}{{dx}}={p} \\ $$$${p}^{\mathrm{2}} =\frac{{dp}}{{dx}} \\ $$$$\int\frac{{dp}}{{p}^{\mathrm{2}} }=\int{dx} \\ $$$$−\frac{\mathrm{1}}{{p}}={x}+{C}_{\mathrm{1}} \\ $$$$\frac{{dy}}{{dx}}={p}=−\frac{\mathrm{1}}{{x}+{C}_{\mathrm{1}} } \\ $$$$\int{dy}=−\int\frac{{dx}}{{x}+{C}_{\mathrm{1}} } \\ $$$$\Rightarrow{y}=−\mathrm{ln}\:\mid{x}+{C}_{\mathrm{1}} \mid+{C}_{\mathrm{2}} \\ $$

Commented by Tawa11 last updated on 03/Feb/25

Thanks sir.  I really appreciate.

$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com