Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 212999 by golsendro last updated on 28/Oct/24

   Find the number of non zero integer    solution (x,y) to the equation       ((15)/(x^2 y)) + (3/(xy)) − (2/x) = 2

$$\:\:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{non}\:\mathrm{zero}\:\mathrm{integer}\: \\ $$$$\:\mathrm{solution}\:\left(\mathrm{x},\mathrm{y}\right)\:\mathrm{to}\:\mathrm{the}\:\mathrm{equation}\: \\ $$$$\:\:\:\:\frac{\mathrm{15}}{\mathrm{x}^{\mathrm{2}} \mathrm{y}}\:+\:\frac{\mathrm{3}}{\mathrm{xy}}\:−\:\frac{\mathrm{2}}{\mathrm{x}}\:=\:\mathrm{2}\: \\ $$

Answered by A5T last updated on 28/Oct/24

((3−2y)/(xy))=2−((15)/(x^2 y))=((2x^2 y−15)/(x^2 y))  ⇒3−2y=((2x^2 y−15)/x)=2xy−((15)/x)⇒x∣15  x=3⇒3−2y=6y−5⇒y=1  Checking⇒(x,y)=(3,1)

$$\frac{\mathrm{3}−\mathrm{2}{y}}{{xy}}=\mathrm{2}−\frac{\mathrm{15}}{{x}^{\mathrm{2}} {y}}=\frac{\mathrm{2}{x}^{\mathrm{2}} {y}−\mathrm{15}}{{x}^{\mathrm{2}} {y}} \\ $$$$\Rightarrow\mathrm{3}−\mathrm{2}{y}=\frac{\mathrm{2}{x}^{\mathrm{2}} {y}−\mathrm{15}}{{x}}=\mathrm{2}{xy}−\frac{\mathrm{15}}{{x}}\Rightarrow{x}\mid\mathrm{15} \\ $$$${x}=\mathrm{3}\Rightarrow\mathrm{3}−\mathrm{2}{y}=\mathrm{6}{y}−\mathrm{5}\Rightarrow{y}=\mathrm{1} \\ $$$${Checking}\Rightarrow\left({x},{y}\right)=\left(\mathrm{3},\mathrm{1}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com