Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 49408 by rahul 19 last updated on 06/Dec/18

Find the number of all such 7−digit  no. which satisfy conditions:  1) divisible by 3  2) repetition allowed  3) zero is not used.

$${Find}\:{the}\:{number}\:{of}\:{all}\:{such}\:\mathrm{7}−{digit} \\ $$$${no}.\:{which}\:{satisfy}\:{conditions}: \\ $$$$\left.\mathrm{1}\right)\:{divisible}\:{by}\:\mathrm{3} \\ $$$$\left.\mathrm{2}\right)\:{repetition}\:{allowed} \\ $$$$\left.\mathrm{3}\right)\:{zero}\:{is}\:{not}\:{used}. \\ $$

Commented by mr W last updated on 06/Dec/18

there are only three kinds of numbers:  3n+k with k=0,1,2  we need only the numbers with k=0.  i.e. only a third of 9^7  numbers can be  divided by 3, so the answer is  (9^7 /3)=((4782969)/3)=1594323

$${there}\:{are}\:{only}\:{three}\:{kinds}\:{of}\:{numbers}: \\ $$$$\mathrm{3}{n}+{k}\:{with}\:{k}=\mathrm{0},\mathrm{1},\mathrm{2} \\ $$$${we}\:{need}\:{only}\:{the}\:{numbers}\:{with}\:{k}=\mathrm{0}. \\ $$$${i}.{e}.\:{only}\:{a}\:{third}\:{of}\:\mathrm{9}^{\mathrm{7}} \:{numbers}\:{can}\:{be} \\ $$$${divided}\:{by}\:\mathrm{3},\:{so}\:{the}\:{answer}\:{is} \\ $$$$\frac{\mathrm{9}^{\mathrm{7}} }{\mathrm{3}}=\frac{\mathrm{4782969}}{\mathrm{3}}=\mathrm{1594323} \\ $$

Commented by Kunal12588 last updated on 06/Dec/18

there are 9^7 =4782969 which satisfies 2^(nd)    and 3^(rd)  condition the problem is 1^(st)  condition

$${there}\:{are}\:\mathrm{9}^{\mathrm{7}} =\mathrm{4782969}\:{which}\:{satisfies}\:\mathrm{2}^{{nd}} \: \\ $$$${and}\:\mathrm{3}^{{rd}} \:{condition}\:{the}\:{problem}\:{is}\:\mathrm{1}^{{st}} \:{condition} \\ $$

Commented by rahul 19 last updated on 06/Dec/18

Yes, the problem is tough. As all three conditions must be satisfied simultaneously!

Answered by MJS last updated on 06/Dec/18

all 6−digit numbers without zero  9^6 =531441  each (1/3) of them divisible by 3 with remainers 0, 1, 2  add 3, 2, 1 as 7^(th)  digit and they′re all divisible  by 3 with remainder 0  ⇒ 531441 numbers satisfy the conditions

$$\mathrm{all}\:\mathrm{6}−\mathrm{digit}\:\mathrm{numbers}\:\mathrm{without}\:\mathrm{zero} \\ $$$$\mathrm{9}^{\mathrm{6}} =\mathrm{531441} \\ $$$$\mathrm{each}\:\frac{\mathrm{1}}{\mathrm{3}}\:\mathrm{of}\:\mathrm{them}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{3}\:\mathrm{with}\:\mathrm{remainers}\:\mathrm{0},\:\mathrm{1},\:\mathrm{2} \\ $$$$\mathrm{add}\:\mathrm{3},\:\mathrm{2},\:\mathrm{1}\:\mathrm{as}\:\mathrm{7}^{\mathrm{th}} \:\mathrm{digit}\:\mathrm{and}\:\mathrm{they}'\mathrm{re}\:\mathrm{all}\:\mathrm{divisible} \\ $$$$\mathrm{by}\:\mathrm{3}\:\mathrm{with}\:\mathrm{remainder}\:\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{531441}\:\mathrm{numbers}\:\mathrm{satisfy}\:\mathrm{the}\:\mathrm{conditions} \\ $$

Commented by MJS last updated on 06/Dec/18

1111113     1111212     ...  1111122     1111221  1111131     1111233  1111143     1111242  1111152     1111251  1111161     1111263  1111173     1111272  1111182     1111281  1111191     1111293

$$\mathrm{1111113}\:\:\:\:\:\mathrm{1111212}\:\:\:\:\:... \\ $$$$\mathrm{1111122}\:\:\:\:\:\mathrm{1111221} \\ $$$$\mathrm{1111131}\:\:\:\:\:\mathrm{1111233} \\ $$$$\mathrm{1111143}\:\:\:\:\:\mathrm{1111242} \\ $$$$\mathrm{1111152}\:\:\:\:\:\mathrm{1111251} \\ $$$$\mathrm{1111161}\:\:\:\:\:\mathrm{1111263} \\ $$$$\mathrm{1111173}\:\:\:\:\:\mathrm{1111272} \\ $$$$\mathrm{1111182}\:\:\:\:\:\mathrm{1111281} \\ $$$$\mathrm{1111191}\:\:\:\:\:\mathrm{1111293} \\ $$

Commented by mr W last updated on 06/Dec/18

very nice sir! but the answer should be  531441×3=1594323    1111113/6/9  1111122/5/8  1111131/4/7  1111143/6/9  ......

$${very}\:{nice}\:{sir}!\:{but}\:{the}\:{answer}\:{should}\:{be} \\ $$$$\mathrm{531441}×\mathrm{3}=\mathrm{1594323} \\ $$$$ \\ $$$$\mathrm{1111113}/\mathrm{6}/\mathrm{9} \\ $$$$\mathrm{1111122}/\mathrm{5}/\mathrm{8} \\ $$$$\mathrm{1111131}/\mathrm{4}/\mathrm{7} \\ $$$$\mathrm{1111143}/\mathrm{6}/\mathrm{9} \\ $$$$...... \\ $$

Commented by MJS last updated on 06/Dec/18

you′re absolutely right! I had been in a hurry  but anyway thought the number of these  numbers is too small...

$$\mathrm{you}'\mathrm{re}\:\mathrm{absolutely}\:\mathrm{right}!\:\mathrm{I}\:\mathrm{had}\:\mathrm{been}\:\mathrm{in}\:\mathrm{a}\:\mathrm{hurry} \\ $$$$\mathrm{but}\:\mathrm{anyway}\:\mathrm{thought}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{these} \\ $$$$\mathrm{numbers}\:\mathrm{is}\:\mathrm{too}\:\mathrm{small}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com