Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 12226 by tawa last updated on 16/Apr/17

Find the nth term of this sequence  3, 18, 45, 84, 135 ...

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{nth}\:\mathrm{term}\:\mathrm{of}\:\mathrm{this}\:\mathrm{sequence} \\ $$$$\mathrm{3},\:\mathrm{18},\:\mathrm{45},\:\mathrm{84},\:\mathrm{135}\:... \\ $$

Answered by ajfour last updated on 16/Apr/17

T_n  = 3n(2n−1) .

$${T}_{{n}} \:=\:\mathrm{3}\boldsymbol{{n}}\left(\mathrm{2}\boldsymbol{{n}}−\mathrm{1}\right)\:. \\ $$

Commented by tawa last updated on 16/Apr/17

Workings plesse !... God bless you.

$$\mathrm{Workings}\:\mathrm{plesse}\:!...\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}. \\ $$

Commented by mrW1 last updated on 16/Apr/17

3=3×1×1  18=3×6=3×2×3  45=3×15=3×3×5  84=3×28=3×4×7  135=3×45=3×5×9  ⇒3×n×(2n−1)

$$\mathrm{3}=\mathrm{3}×\mathrm{1}×\mathrm{1} \\ $$$$\mathrm{18}=\mathrm{3}×\mathrm{6}=\mathrm{3}×\mathrm{2}×\mathrm{3} \\ $$$$\mathrm{45}=\mathrm{3}×\mathrm{15}=\mathrm{3}×\mathrm{3}×\mathrm{5} \\ $$$$\mathrm{84}=\mathrm{3}×\mathrm{28}=\mathrm{3}×\mathrm{4}×\mathrm{7} \\ $$$$\mathrm{135}=\mathrm{3}×\mathrm{45}=\mathrm{3}×\mathrm{5}×\mathrm{9} \\ $$$$\Rightarrow\mathrm{3}×{n}×\left(\mathrm{2}{n}−\mathrm{1}\right) \\ $$

Commented by ajfour last updated on 16/Apr/17

1×3 , 2×9 , 3×15 , 4×21 , 5×27, ..  3[ 1×1 , 2×3 , 3×5 , 4×7 , 5×9 , ..]  so  3n(2n−1) .

$$\mathrm{1}×\mathrm{3}\:,\:\mathrm{2}×\mathrm{9}\:,\:\mathrm{3}×\mathrm{15}\:,\:\mathrm{4}×\mathrm{21}\:,\:\mathrm{5}×\mathrm{27},\:.. \\ $$$$\mathrm{3}\left[\:\mathrm{1}×\mathrm{1}\:,\:\mathrm{2}×\mathrm{3}\:,\:\mathrm{3}×\mathrm{5}\:,\:\mathrm{4}×\mathrm{7}\:,\:\mathrm{5}×\mathrm{9}\:,\:..\right] \\ $$$${so}\:\:\mathrm{3}{n}\left(\mathrm{2}{n}−\mathrm{1}\right)\:. \\ $$

Commented by tawa last updated on 16/Apr/17

God bless you sir.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Answered by sandy_suhendra last updated on 16/Apr/17

the n th term Un=an^2 +bn+c  if n=1 ⇒a+b+c=3....(1)  if n=2 ⇒4a+2b+c=18...(2)  if n=3 ⇒9a+3b+c=45....(3)  (2)−(1)⇒3a+b=15....(4)  (3)−(2)⇒5a+b=27....(5)  (5)−(4)⇒2a=12⇒a=6  substitute to(4)⇒3(6)+b=15⇒b=−3       substitute to (1)⇒6−3+c=3⇒c=0       so Un=6n^2 −3n

$$\mathrm{the}\:\mathrm{n}\:\mathrm{th}\:\mathrm{term}\:\mathrm{Un}=\mathrm{an}^{\mathrm{2}} +\mathrm{bn}+\mathrm{c} \\ $$$$\mathrm{if}\:\mathrm{n}=\mathrm{1}\:\Rightarrow\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{3}....\left(\mathrm{1}\right) \\ $$$$\mathrm{if}\:\mathrm{n}=\mathrm{2}\:\Rightarrow\mathrm{4a}+\mathrm{2b}+\mathrm{c}=\mathrm{18}...\left(\mathrm{2}\right) \\ $$$$\mathrm{if}\:\mathrm{n}=\mathrm{3}\:\Rightarrow\mathrm{9a}+\mathrm{3b}+\mathrm{c}=\mathrm{45}....\left(\mathrm{3}\right) \\ $$$$\left(\mathrm{2}\right)−\left(\mathrm{1}\right)\Rightarrow\mathrm{3a}+\mathrm{b}=\mathrm{15}....\left(\mathrm{4}\right) \\ $$$$\left(\mathrm{3}\right)−\left(\mathrm{2}\right)\Rightarrow\mathrm{5a}+\mathrm{b}=\mathrm{27}....\left(\mathrm{5}\right) \\ $$$$\left(\mathrm{5}\right)−\left(\mathrm{4}\right)\Rightarrow\mathrm{2a}=\mathrm{12}\Rightarrow\mathrm{a}=\mathrm{6} \\ $$$$\mathrm{substitute}\:\mathrm{to}\left(\mathrm{4}\right)\Rightarrow\mathrm{3}\left(\mathrm{6}\right)+\mathrm{b}=\mathrm{15}\Rightarrow\mathrm{b}=−\mathrm{3}\:\:\:\:\: \\ $$$$\mathrm{substitute}\:\mathrm{to}\:\left(\mathrm{1}\right)\Rightarrow\mathrm{6}−\mathrm{3}+\mathrm{c}=\mathrm{3}\Rightarrow\mathrm{c}=\mathrm{0}\:\:\:\:\: \\ $$$$\mathrm{so}\:\mathrm{Un}=\mathrm{6n}^{\mathrm{2}} −\mathrm{3n} \\ $$

Commented by sandy_suhendra last updated on 16/Apr/17

we can use Un=an^2 +bn+c  for the sequence like this  1,2,5,10,17,...  2,4,8,14,22,...  3,18,45,84,...

$$\mathrm{we}\:\mathrm{can}\:\mathrm{use}\:\mathrm{Un}=\mathrm{an}^{\mathrm{2}} +\mathrm{bn}+\mathrm{c} \\ $$$$\mathrm{for}\:\mathrm{the}\:\mathrm{sequence}\:\mathrm{like}\:\mathrm{this} \\ $$$$\mathrm{1},\mathrm{2},\mathrm{5},\mathrm{10},\mathrm{17},... \\ $$$$\mathrm{2},\mathrm{4},\mathrm{8},\mathrm{14},\mathrm{22},... \\ $$$$\mathrm{3},\mathrm{18},\mathrm{45},\mathrm{84},... \\ $$

Commented by tawa last updated on 16/Apr/17

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com