Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 165831 by HongKing last updated on 09/Feb/22

Find the integer part of the number:  ((2015 ∙ 2016 ∙ 2017))^(1/3)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{integer}\:\mathrm{part}\:\mathrm{of}\:\mathrm{the}\:\mathrm{number}: \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{2015}\:\centerdot\:\mathrm{2016}\:\centerdot\:\mathrm{2017}} \\ $$

Commented by mr W last updated on 09/Feb/22

((x(x+1)(x+2)))^(1/3)   >((x×x×x))^(1/3) =x    ((x(x+1)(x+2)))^(1/3) =(((x+1)((x+1)^2 −1)))^(1/3)   <(((x+1)(x+1)^2 ))^(1/3) =x+1    x<((x(x+1)(x+2)))^(1/3) <x+1  ⇒[((x(x+1)(x+2)))^(1/3) ]=x    ⇒[((2015×2016×2017))^(1/3) =2015

$$\sqrt[{\mathrm{3}}]{{x}\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)} \\ $$$$>\sqrt[{\mathrm{3}}]{{x}×{x}×{x}}={x} \\ $$$$ \\ $$$$\sqrt[{\mathrm{3}}]{{x}\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)}=\sqrt[{\mathrm{3}}]{\left({x}+\mathrm{1}\right)\left(\left({x}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{1}\right)} \\ $$$$<\sqrt[{\mathrm{3}}]{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{1}\right)^{\mathrm{2}} }={x}+\mathrm{1} \\ $$$$ \\ $$$${x}<\sqrt[{\mathrm{3}}]{{x}\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)}<{x}+\mathrm{1} \\ $$$$\Rightarrow\left[\sqrt[{\mathrm{3}}]{{x}\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)}\right]={x} \\ $$$$ \\ $$$$\Rightarrow\left[\sqrt[{\mathrm{3}}]{\mathrm{2015}×\mathrm{2016}×\mathrm{2017}}=\mathrm{2015}\right. \\ $$

Answered by naka3546 last updated on 09/Feb/22

Let  x = 2016        ((2015 ∙ 2016 ∙ 2017))^(1/3)   = (((x−1)∙x∙(x+1)))^(1/3)   = ((x(x^2 −1)))^(1/3)   = ((x^3 −x))^(1/3)    <  (x^3 )^(1/3)       Remember  that       x(x+1)−3x+1 < x(x+1)                      (x−1)^2  < x(x+1)     (((x−1)∙(x−1)^2 ))^(1/3)   <  (((x−1)∙x∙(x+1)))^(1/3)    2015 = (((x−1)^3 ))^(1/3)   <  ((x∙(x^2 −1)))^(1/3)   <  (x^3 )^(1/3)   =  2016    Integer  part  of  ((2015∙2016∙2017))^(1/3)   is  2015 .

$$\mathrm{Let}\:\:{x}\:=\:\mathrm{2016} \\ $$$$\:\:\:\:\:\:\sqrt[{\mathrm{3}}]{\mathrm{2015}\:\centerdot\:\mathrm{2016}\:\centerdot\:\mathrm{2017}} \\ $$$$=\:\sqrt[{\mathrm{3}}]{\left({x}−\mathrm{1}\right)\centerdot{x}\centerdot\left({x}+\mathrm{1}\right)} \\ $$$$=\:\sqrt[{\mathrm{3}}]{{x}\left({x}^{\mathrm{2}} −\mathrm{1}\right)} \\ $$$$=\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} −{x}}\:\:\:<\:\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} }\:\: \\ $$$$ \\ $$$${Remember}\:\:{that}\:\: \\ $$$$\:\:\:{x}\left({x}+\mathrm{1}\right)−\mathrm{3}{x}+\mathrm{1}\:<\:{x}\left({x}+\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({x}−\mathrm{1}\right)^{\mathrm{2}} \:<\:{x}\left({x}+\mathrm{1}\right) \\ $$$$ \\ $$$$\:\sqrt[{\mathrm{3}}]{\left({x}−\mathrm{1}\right)\centerdot\left({x}−\mathrm{1}\right)^{\mathrm{2}} }\:\:<\:\:\sqrt[{\mathrm{3}}]{\left({x}−\mathrm{1}\right)\centerdot{x}\centerdot\left({x}+\mathrm{1}\right)}\: \\ $$$$\mathrm{2015}\:=\:\sqrt[{\mathrm{3}}]{\left({x}−\mathrm{1}\right)^{\mathrm{3}} }\:\:<\:\:\sqrt[{\mathrm{3}}]{{x}\centerdot\left({x}^{\mathrm{2}} −\mathrm{1}\right)}\:\:<\:\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} }\:\:=\:\:\mathrm{2016} \\ $$$$ \\ $$$$\mathrm{Integer}\:\:\mathrm{part}\:\:\mathrm{of}\:\:\sqrt[{\mathrm{3}}]{\mathrm{2015}\centerdot\mathrm{2016}\centerdot\mathrm{2017}}\:\:\mathrm{is}\:\:\mathrm{2015}\:. \\ $$

Commented by naka3546 last updated on 09/Feb/22

yes, sir.

$${yes},\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com