Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 187255 by Spillover last updated on 15/Feb/23

Find the directional derivatives of the  function   f(x,y,z)=2x^2 +3y^2 +z^2  at the point p(2,1,3)

$${Find}\:{the}\:{directional}\:{derivatives}\:{of}\:{the} \\ $$$${function}\: \\ $$$${f}\left({x},\mathrm{y},\mathrm{z}\right)=\mathrm{2}{x}^{\mathrm{2}} +\mathrm{3}{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \:{at}\:{the}\:{point}\:{p}\left(\mathrm{2},\mathrm{1},\mathrm{3}\right) \\ $$

Answered by MikeH last updated on 15/Feb/23

D_p (x,y,z) = (p_x ,p_y ,p_z )•(f_x ,f_y ,f_z )  ⇒ D_p (x,y,z) = 2(4x)+1(6y)+3(2z)  ⇒ D_p (x,y,z) = 8x + 6y + 6z

$${D}_{{p}} \left({x},{y},{z}\right)\:=\:\left({p}_{{x}} ,{p}_{{y}} ,{p}_{{z}} \right)\bullet\left({f}_{{x}} ,{f}_{{y}} ,{f}_{{z}} \right) \\ $$$$\Rightarrow\:{D}_{{p}} \left({x},{y},{z}\right)\:=\:\mathrm{2}\left(\mathrm{4}{x}\right)+\mathrm{1}\left(\mathrm{6}{y}\right)+\mathrm{3}\left(\mathrm{2}{z}\right) \\ $$$$\Rightarrow\:{D}_{{p}} \left({x},{y},{z}\right)\:=\:\mathrm{8}{x}\:+\:\mathrm{6}{y}\:+\:\mathrm{6}{z} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com