Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 137585 by bramlexs22 last updated on 04/Apr/21

Find the cube of the number   N= (√(7(√(3(√(7(√(3(√(7(√(3(√(7(√(3...))))))))))))))))

$${Find}\:{the}\:{cube}\:{of}\:{the}\:{number}\: \\ $$$${N}=\:\sqrt{\mathrm{7}\sqrt{\mathrm{3}\sqrt{\mathrm{7}\sqrt{\mathrm{3}\sqrt{\mathrm{7}\sqrt{\mathrm{3}\sqrt{\mathrm{7}\sqrt{\mathrm{3}...}}}}}}}} \\ $$

Answered by bemath last updated on 04/Apr/21

N=7^((1/2)+(1/8)+(1/(32))+(1/(128))+...) . 3^((1/4)+(1/(16))+(1/(64))+...)   N=7^((1/2)/(1−1/4))  . 3^((1/4)/(1−1/4))   N= 7^(2/3) . 3^(1/3)  ⇔ N^3  = 49×3  N^3  = 147

$${N}=\mathrm{7}^{\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{8}}+\frac{\mathrm{1}}{\mathrm{32}}+\frac{\mathrm{1}}{\mathrm{128}}+...} .\:\mathrm{3}^{\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{16}}+\frac{\mathrm{1}}{\mathrm{64}}+...} \\ $$$${N}=\mathrm{7}^{\frac{\mathrm{1}/\mathrm{2}}{\mathrm{1}−\mathrm{1}/\mathrm{4}}} \:.\:\mathrm{3}^{\frac{\mathrm{1}/\mathrm{4}}{\mathrm{1}−\mathrm{1}/\mathrm{4}}} \\ $$$${N}=\:\mathrm{7}^{\frac{\mathrm{2}}{\mathrm{3}}} .\:\mathrm{3}^{\frac{\mathrm{1}}{\mathrm{3}}} \:\Leftrightarrow\:{N}^{\mathrm{3}} \:=\:\mathrm{49}×\mathrm{3} \\ $$$${N}^{\mathrm{3}} \:=\:\mathrm{147} \\ $$

Answered by mr W last updated on 04/Apr/21

N=(√(7(√(3N))))  N^2 =7(√(3N))  N^4 =7^2 ×3N  ⇒N^3 =7^2 ×3=147

$${N}=\sqrt{\mathrm{7}\sqrt{\mathrm{3}{N}}} \\ $$$${N}^{\mathrm{2}} =\mathrm{7}\sqrt{\mathrm{3}{N}} \\ $$$${N}^{\mathrm{4}} =\mathrm{7}^{\mathrm{2}} ×\mathrm{3}{N} \\ $$$$\Rightarrow{N}^{\mathrm{3}} =\mathrm{7}^{\mathrm{2}} ×\mathrm{3}=\mathrm{147} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com