Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 210917 by depressiveshrek last updated on 22/Aug/24

Find the area intersected by three  circles of radius 1, centered at the  origin, at (1, 0) and (1, 1) respectively.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{intersected}\:\mathrm{by}\:\mathrm{three} \\ $$$$\mathrm{circles}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{1},\:\mathrm{centered}\:\mathrm{at}\:\mathrm{the} \\ $$$$\mathrm{origin},\:\mathrm{at}\:\left(\mathrm{1},\:\mathrm{0}\right)\:\mathrm{and}\:\left(\mathrm{1},\:\mathrm{1}\right)\:\mathrm{respectively}. \\ $$

Answered by mr W last updated on 22/Aug/24

Commented by mr W last updated on 22/Aug/24

one sector with angle 30°:  A_1 =((30)/(360))×π×1^2 =(π/(12))  two segments with angle 60°:  A_2 =2×(1^2 /2)×((π/3)−sin 60°)=(π/3)−((√3)/2)  total shaded area:  (π/(12))+(π/3)−((√3)/2)=((5π−6(√3))/(12))≈0.443 ✓

$${one}\:{sector}\:{with}\:{angle}\:\mathrm{30}°: \\ $$$${A}_{\mathrm{1}} =\frac{\mathrm{30}}{\mathrm{360}}×\pi×\mathrm{1}^{\mathrm{2}} =\frac{\pi}{\mathrm{12}} \\ $$$${two}\:{segments}\:{with}\:{angle}\:\mathrm{60}°: \\ $$$${A}_{\mathrm{2}} =\mathrm{2}×\frac{\mathrm{1}^{\mathrm{2}} }{\mathrm{2}}×\left(\frac{\pi}{\mathrm{3}}−\mathrm{sin}\:\mathrm{60}°\right)=\frac{\pi}{\mathrm{3}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$${total}\:{shaded}\:{area}: \\ $$$$\frac{\pi}{\mathrm{12}}+\frac{\pi}{\mathrm{3}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}=\frac{\mathrm{5}\pi−\mathrm{6}\sqrt{\mathrm{3}}}{\mathrm{12}}\approx\mathrm{0}.\mathrm{443}\:\checkmark \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com