Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 125997 by bramlexs22 last updated on 16/Dec/20

Find the Riemann sum for the  given function with the specified  number of intervals using left  endpoints f(x)= 4ln x+2x ; 1≤x≤4  n=7 . Round your answer to two  decimal places ?

$${Find}\:{the}\:{Riemann}\:{sum}\:{for}\:{the} \\ $$$${given}\:{function}\:{with}\:{the}\:{specified} \\ $$$${number}\:{of}\:{intervals}\:{using}\:{left} \\ $$$${endpoints}\:{f}\left({x}\right)=\:\mathrm{4ln}\:{x}+\mathrm{2}{x}\:;\:\mathrm{1}\leqslant{x}\leqslant\mathrm{4} \\ $$$${n}=\mathrm{7}\:.\:{Round}\:{your}\:{answer}\:{to}\:{two} \\ $$$${decimal}\:{places}\:? \\ $$

Answered by liberty last updated on 16/Dec/20

We want to use seven rectangles to equals  width to estimate the area under f(x)=4ln x+2x  over the interval 1≤x≤4 .   Δx = ((4−1)/7) = (3/7)  then devide the interval [ 1 ,4 ] into 7 equals   pieces . Gives x=1, x=((10)/7) ,x=((13)/7) ,...,x=((25)/7)  the areas : (3/7)f(1)+(3/7)f(((10)/7))+(3/7)f(((13)/7))+...+(3/7)f(((25)/7))  = (3/7) { 4ln 1+2+4ln ((10)/7)+((20)/7)+4ln ((13)/7)+((26)/7)+...+4ln ((25)/7)+((50)/7) }   ≈ 22.66

$${We}\:{want}\:{to}\:{use}\:{seven}\:{rectangles}\:{to}\:{equals} \\ $$$${width}\:{to}\:{estimate}\:{the}\:{area}\:{under}\:{f}\left({x}\right)=\mathrm{4ln}\:{x}+\mathrm{2}{x} \\ $$$${over}\:{the}\:{interval}\:\mathrm{1}\leqslant{x}\leqslant\mathrm{4}\:. \\ $$$$\:\Delta{x}\:=\:\frac{\mathrm{4}−\mathrm{1}}{\mathrm{7}}\:=\:\frac{\mathrm{3}}{\mathrm{7}} \\ $$$${then}\:{devide}\:{the}\:{interval}\:\left[\:\mathrm{1}\:,\mathrm{4}\:\right]\:{into}\:\mathrm{7}\:{equals}\: \\ $$$${pieces}\:.\:{Gives}\:{x}=\mathrm{1},\:{x}=\frac{\mathrm{10}}{\mathrm{7}}\:,{x}=\frac{\mathrm{13}}{\mathrm{7}}\:,...,{x}=\frac{\mathrm{25}}{\mathrm{7}} \\ $$$${the}\:{areas}\::\:\frac{\mathrm{3}}{\mathrm{7}}{f}\left(\mathrm{1}\right)+\frac{\mathrm{3}}{\mathrm{7}}{f}\left(\frac{\mathrm{10}}{\mathrm{7}}\right)+\frac{\mathrm{3}}{\mathrm{7}}{f}\left(\frac{\mathrm{13}}{\mathrm{7}}\right)+...+\frac{\mathrm{3}}{\mathrm{7}}{f}\left(\frac{\mathrm{25}}{\mathrm{7}}\right) \\ $$$$=\:\frac{\mathrm{3}}{\mathrm{7}}\:\left\{\:\mathrm{4ln}\:\mathrm{1}+\mathrm{2}+\mathrm{4ln}\:\frac{\mathrm{10}}{\mathrm{7}}+\frac{\mathrm{20}}{\mathrm{7}}+\mathrm{4ln}\:\frac{\mathrm{13}}{\mathrm{7}}+\frac{\mathrm{26}}{\mathrm{7}}+...+\mathrm{4ln}\:\frac{\mathrm{25}}{\mathrm{7}}+\frac{\mathrm{50}}{\mathrm{7}}\:\right\} \\ $$$$\:\approx\:\mathrm{22}.\mathrm{66}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com