Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 183464 by Mastermind last updated on 26/Dec/22

Find the Maximum value of  3x(4−x)    M.m

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{Maximum}\:\mathrm{value}\:\mathrm{of} \\ $$$$\mathrm{3x}\left(\mathrm{4}−\mathrm{x}\right) \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$

Answered by mr W last updated on 26/Dec/22

3x(4−x)≤3×(((x+4−x)/2))^2  =12  ⇒maximum =12

$$\mathrm{3}{x}\left(\mathrm{4}−{x}\right)\leqslant\mathrm{3}×\left(\frac{{x}+\mathrm{4}−{x}}{\mathrm{2}}\right)^{\mathrm{2}} \:=\mathrm{12} \\ $$$$\Rightarrow{maximum}\:=\mathrm{12} \\ $$

Commented by manolex last updated on 26/Dec/22

M.A⟩M.G  ((a+b)/2) ⟩(√(ab))  a=x  b=4−x  ((x+(4−x))/2)⟩(√(x(4−x)))  2⟩(√(x(4−x)))  4⟩x(4−x)  12⟩3x(4−x)

$${M}.{A}\rangle{M}.{G} \\ $$$$\frac{{a}+{b}}{\mathrm{2}}\:\rangle\sqrt{{ab}} \\ $$$${a}={x} \\ $$$${b}=\mathrm{4}−{x} \\ $$$$\frac{{x}+\left(\mathrm{4}−{x}\right)}{\mathrm{2}}\rangle\sqrt{{x}\left(\mathrm{4}−{x}\right)} \\ $$$$\mathrm{2}\rangle\sqrt{{x}\left(\mathrm{4}−{x}\right)} \\ $$$$\mathrm{4}\rangle{x}\left(\mathrm{4}−{x}\right) \\ $$$$\mathrm{12}\rangle\mathrm{3}{x}\left(\mathrm{4}−{x}\right) \\ $$

Answered by manxsol last updated on 26/Dec/22

Terms of Service

Privacy Policy

Contact: info@tinkutara.com