Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 140330 by Satyendra last updated on 06/May/21

Find the Integration Value:  1  ∫(((√x)d(x))/(1+^3 (√x)))=?  2 ∫(dx/(x^(1/2) −x^(1/4) ))=?

$${Find}\:{the}\:{Integration}\:{Value}: \\ $$$$\mathrm{1} \:\int\frac{\sqrt{{x}}{d}\left({x}\right)}{\mathrm{1}+^{\mathrm{3}} \sqrt{{x}}}=? \\ $$$$\mathrm{2} \int\frac{{dx}}{{x}^{\frac{\mathrm{1}}{\mathrm{2}}} −{x}^{\frac{\mathrm{1}}{\mathrm{4}}} }=? \\ $$

Answered by john_santu last updated on 06/May/21

(1) let x = t^6  →dx = 6t^5  dt  I= ∫ (t^3 /(1+t^2 )) (6t^5  dt )  I= ∫ ((6t^8 )/(1+t^2 )) dt .  now it easy to solve

$$\left(\mathrm{1}\right)\:{let}\:{x}\:=\:{t}^{\mathrm{6}} \:\rightarrow{dx}\:=\:\mathrm{6}{t}^{\mathrm{5}} \:{dt} \\ $$$${I}=\:\int\:\frac{{t}^{\mathrm{3}} }{\mathrm{1}+{t}^{\mathrm{2}} }\:\left(\mathrm{6}{t}^{\mathrm{5}} \:{dt}\:\right) \\ $$$${I}=\:\int\:\frac{\mathrm{6}{t}^{\mathrm{8}} }{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt}\:. \\ $$$${now}\:{it}\:{easy}\:{to}\:{solve} \\ $$

Answered by benjo_mathlover last updated on 06/May/21

(2) I= ∫ (dx/( (√x)−(x)^(1/4) ))   let x = z^4  →dx = 4z^3  dz  I= ∫ ((4z^3 )/(z^2 −z)) dz = ∫ ((4z^2 )/(z−1)) dz   use partial fraction

$$\left(\mathrm{2}\right)\:\mathrm{I}=\:\int\:\frac{\mathrm{dx}}{\:\sqrt{\mathrm{x}}−\sqrt[{\mathrm{4}}]{\mathrm{x}}}\: \\ $$$$\mathrm{let}\:\mathrm{x}\:=\:\mathrm{z}^{\mathrm{4}} \:\rightarrow\mathrm{dx}\:=\:\mathrm{4z}^{\mathrm{3}} \:\mathrm{dz} \\ $$$$\mathrm{I}=\:\int\:\frac{\mathrm{4z}^{\mathrm{3}} }{\mathrm{z}^{\mathrm{2}} −\mathrm{z}}\:\mathrm{dz}\:=\:\int\:\frac{\mathrm{4z}^{\mathrm{2}} }{\mathrm{z}−\mathrm{1}}\:\mathrm{dz}\: \\ $$$$\mathrm{use}\:\mathrm{partial}\:\mathrm{fraction} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com