Question Number 166475 by Rasheed.Sindhi last updated on 20/Feb/22 | ||
$$\mathcal{F}{ind}\:{out}\:{n}\in\mathbb{N} \\ $$$$\:{such}\:{that} \\ $$$${n}^{\mathrm{2}} +{n}\:{is}\:{divisible}\:{by}\:\mathrm{30}. \\ $$ | ||
Commented by mr W last updated on 20/Feb/22 | ||
$${n}^{\mathrm{2}} +{n}={n}\left({n}+\mathrm{1}\right)=\mathrm{30}{m} \\ $$$$\mathrm{5}×\mathrm{6}\:\Rightarrow{n}=\mathrm{5} \\ $$$$\mathrm{9}×\mathrm{10}\:\Rightarrow{n}=\mathrm{9} \\ $$$$\left(\mathrm{30}{k}−\mathrm{1}\right)\left(\mathrm{30}{k}\right)\:\Rightarrow{n}=\mathrm{30}{k}−\mathrm{1} \\ $$$$\left(\mathrm{30}{k}\right)\left(\mathrm{30}{k}+\mathrm{1}\right)\Rightarrow{n}=\mathrm{30}{k} \\ $$ | ||
Commented by mathsmine last updated on 20/Feb/22 | ||
$${n}=\mathrm{15}\:{worck}\:{also} \\ $$$$ \\ $$ | ||
Commented by Rasheed.Sindhi last updated on 21/Feb/22 | ||
$${Also}\:\:\:{n}=\mathrm{14},\mathrm{20},\mathrm{24} \\ $$ | ||
Commented by Rasheed.Sindhi last updated on 21/Feb/22 | ||
$$\mathcal{T}{han}\mathcal{X}\:\mathcal{S}{irs}! \\ $$ | ||
Commented by SANOGO last updated on 21/Feb/22 | ||
$${merci}\:{bien} \\ $$ | ||
Answered by Rasheed.Sindhi last updated on 21/Feb/22 | ||
$${n}\left({n}+\mathrm{1}\right)=\mathrm{30}{k} \\ $$$$\bullet\mathrm{2}\mid{n}\:\wedge\:\mathrm{15}\mid\left({n}+\mathrm{1}\right) \\ $$$${n}=\mathrm{2}{k}\Rightarrow\mathrm{15}\mid\left(\mathrm{2}{k}+\mathrm{1}\right) \\ $$$$\mathrm{2}{k}+\mathrm{1}=\mathrm{15}{m} \\ $$$${n}=\mathrm{2}{k}=\mathrm{15}{m}−\mathrm{1} \\ $$$${n}=\mathrm{2}{k}=\mathrm{15}{m}−\mathrm{1} \\ $$$$\begin{array}{|c|}{{n}=\mathrm{2}{k}=\mathrm{15}{m}−\mathrm{1}}\\\hline\end{array} \\ $$$$\:\:\:{k}=\frac{\mathrm{15}{m}−\mathrm{1}}{\mathrm{2}}\in\mathbb{N} \\ $$$${n}=\mathrm{2}\left(\:\frac{\mathrm{15}{m}−\mathrm{1}}{\mathrm{2}}\in\mathbb{N}\:\right) \\ $$$$\begin{array}{|c|c|}{{m}}&\hline{\mathrm{1}}&\hline{\mathrm{3}}&\hline{\mathrm{5}}&\hline{...}&\hline{\mathrm{2}{a}+\mathrm{1}}&\hline{...}\\{{n}}&\hline{\mathrm{14}}&\hline{\mathrm{44}}&\hline{\mathrm{74}}&\hline{...}&\hline{\underset{{a}=\mathrm{0},\mathrm{1},\mathrm{2},...} {\mathrm{30}{a}+\mathrm{14}}}&\hline{...}\\\hline\end{array} \\ $$$$\bullet\mathrm{3}\mid{n}\:\wedge\:\mathrm{10}\mid\left({n}+\mathrm{1}\right) \\ $$$${n}=\mathrm{3}{k}\Rightarrow\mathrm{10}\mid\left(\mathrm{3}{k}+\mathrm{1}\right) \\ $$$$\mathrm{3}{k}+\mathrm{1}=\mathrm{10}{m} \\ $$$${n}=\mathrm{3}{k}=\mathrm{10}{m}−\mathrm{1} \\ $$$$\begin{array}{|c|}{{n}=\mathrm{3}{k}=\mathrm{10}{m}−\mathrm{1}}\\\hline\end{array} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{k}=\frac{\mathrm{10}{m}−\mathrm{1}}{\mathrm{3}}\in\mathbb{N} \\ $$$$\:\:\:{n}=\mathrm{3}\left(\frac{\mathrm{10}{m}−\mathrm{1}}{\mathrm{3}}\in\mathbb{N}\right) \\ $$$$\begin{array}{|c|c|}{{m}}&\hline{\mathrm{1}}&\hline{\mathrm{4}}&\hline{\mathrm{7}}&\hline{\mathrm{10}}&\hline{...}&\hline{\mathrm{1}+\mathrm{3}{a}}&\hline{...}\\{{n}}&\hline{\mathrm{9}}&\hline{\mathrm{39}}&\hline{\mathrm{69}}&\hline{\mathrm{99}}&\hline{...}&\hline{\underset{{a}=\mathrm{0},\mathrm{1},\mathrm{2},...} {\mathrm{30}{a}+\mathrm{9}}}&\hline{...}\\\hline\end{array} \\ $$$$\bullet\mathrm{5}\mid{n}\:\wedge\:\mathrm{6}\mid\left({n}+\mathrm{1}\right) \\ $$$${n}=\mathrm{5}{k}\Rightarrow\mathrm{6}\mid\left(\mathrm{5}{k}+\mathrm{1}\right) \\ $$$$\mathrm{5}{k}+\mathrm{1}=\mathrm{6}{m} \\ $$$${n}=\mathrm{5}{k}=\mathrm{6}{m}−\mathrm{1} \\ $$$$\begin{array}{|c|}{{n}=\mathrm{5}{k}=\mathrm{6}{m}−\mathrm{1}}\\\hline\end{array} \\ $$$$\:\:\:\:\:\:\:\:\:\:{k}=\frac{\mathrm{6}{m}−\mathrm{1}}{\mathrm{5}}\in\mathbb{N} \\ $$$${n}=\mathrm{5}\left(\frac{\mathrm{6}{m}−\mathrm{1}}{\mathrm{5}}\in\mathbb{N}\right) \\ $$$$\begin{array}{|c|c|}{{m}}&\hline{\mathrm{1}}&\hline{\mathrm{6}}&\hline{\mathrm{11}}&\hline{...}&\hline{\mathrm{5}{a}+\mathrm{1}}&\hline{...}\\{{n}}&\hline{\mathrm{5}}&\hline{\mathrm{35}}&\hline{\mathrm{65}}&\hline{...}&\hline{\underset{{a}=\mathrm{0},\mathrm{1},\mathrm{2},...} {\mathrm{30}{a}+\mathrm{5}}}&\hline{...}\\\hline\end{array} \\ $$$$\bullet\mathrm{6}\mid{n}\:\wedge\:\mathrm{5}\mid\left({n}+\mathrm{1}\right) \\ $$$${n}=\mathrm{6}{k}\Rightarrow\mathrm{5}\mid\left(\mathrm{6}{k}+\mathrm{1}\right) \\ $$$$\mathrm{6}{k}+\mathrm{1}=\mathrm{5}{m} \\ $$$${n}=\mathrm{6}{k}=\mathrm{5}{m}−\mathrm{1} \\ $$$$\begin{array}{|c|}{{n}=\mathrm{6}{k}=\mathrm{5}{m}−\mathrm{1}}\\\hline\end{array} \\ $$$$\:\:\:\:\:\:\:\:{k}=\frac{\mathrm{5}{m}−\mathrm{1}}{\mathrm{6}}\in\mathbb{N} \\ $$$${n}=\mathrm{6}\left(\frac{\mathrm{5}{m}−\mathrm{1}}{\mathrm{6}}\in\mathbb{N}\right) \\ $$$$\begin{array}{|c|c|}{{m}}&\hline{\mathrm{5}}&\hline{\mathrm{11}}&\hline{\mathrm{17}}&\hline{...}&\hline{\mathrm{6}{a}+\mathrm{5}}&\hline{...}\\{{n}}&\hline{\mathrm{24}}&\hline{\mathrm{54}}&\hline{\mathrm{84}}&\hline{...}&\hline{\mathrm{30}{a}+\mathrm{24}}&\hline{...}\\\hline\end{array} \\ $$$$\bullet\mathrm{10}\mid{n}\:\wedge\:\mathrm{3}\mid\left({n}+\mathrm{1}\right) \\ $$$${n}=\mathrm{10}{k}\Rightarrow\mathrm{3}\mid\left(\mathrm{10}{k}+\mathrm{1}\right) \\ $$$$\mathrm{10}{k}+\mathrm{1}=\mathrm{3}{m} \\ $$$${n}=\mathrm{10}{k}=\mathrm{3}{m}−\mathrm{1} \\ $$$$\begin{array}{|c|}{{n}=\mathrm{10}{k}=\mathrm{3}{m}−\mathrm{1}}\\\hline\end{array} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{k}=\frac{\mathrm{3}{m}−\mathrm{1}}{\mathrm{10}}\in\mathbb{N} \\ $$$$\:\:\:\:{n}=\mathrm{10}\left(\frac{\mathrm{3}{m}−\mathrm{1}}{\mathrm{10}}\in\mathbb{N}\right) \\ $$$$\begin{array}{|c|c|}{{m}}&\hline{\mathrm{7}}&\hline{\mathrm{17}}&\hline{\mathrm{27}}&\hline{...}&\hline{\mathrm{10}{a}+\mathrm{7}}&\hline{...}\\{{n}}&\hline{\mathrm{20}}&\hline{\mathrm{50}}&\hline{\mathrm{80}}&\hline{...}&\hline{\underset{{a}=\mathrm{0},\mathrm{1},\mathrm{2},...} {\mathrm{30}{a}+\:\mathrm{2}0}}&\hline{...}\\\hline\end{array} \\ $$$$\bullet\mathrm{15}\mid{n}\:\wedge\:\mathrm{2}\mid\left({n}+\mathrm{1}\right) \\ $$$${n}=\mathrm{15}{k}\Rightarrow\mathrm{2}\mid\left(\mathrm{15}{k}+\mathrm{1}\right) \\ $$$$\mathrm{15}{k}+\mathrm{1}=\mathrm{2}{m} \\ $$$${n}=\mathrm{15}{k}=\mathrm{2}{m}−\mathrm{1} \\ $$$$\begin{array}{|c|}{{n}=\mathrm{15}{k}=\mathrm{2}{m}−\mathrm{1}}\\\hline\end{array} \\ $$$$\:\:\:\:\:\:\:\:{k}=\frac{\mathrm{2}{m}−\mathrm{1}}{\mathrm{15}}\in\mathbb{N} \\ $$$$\:\:\:\:\:{n}=\mathrm{15}\left(\frac{\mathrm{2}{m}−\mathrm{1}}{\mathrm{15}}\in\mathbb{N}\right) \\ $$$$\begin{array}{|c|c|}{{m}}&\hline{\mathrm{8}}&\hline{\mathrm{23}}&\hline{\mathrm{38}}&\hline{...}&\hline{\mathrm{15}{a}+\mathrm{8}}&\hline{...}\\{{n}}&\hline{\mathrm{15}}&\hline{\mathrm{45}}&\hline{\mathrm{75}}&\hline{...}&\hline{\underset{{a}=\mathrm{0},\mathrm{1},\mathrm{2},...} {\mathrm{30}{a}+\mathrm{15}}}&\hline{...}\\\hline\end{array} \\ $$$$\bullet\mathrm{30}\mid{n}\: \\ $$$$\:\:\:{n}=\mathrm{30}{a} \\ $$$$\begin{array}{|c|}{\mathrm{0}}&\hline{\mathrm{30}}&\hline{\mathrm{60}}&\hline{\mathrm{90}}&\hline{...}&\hline{\mathrm{30}{a}}&\hline{...}\\\hline\end{array}\: \\ $$$$\bullet\mathrm{30}\mid\left({n}+\mathrm{1}\right) \\ $$$${n}+\mathrm{1}=\mathrm{30}{a}\Rightarrow{n}=\mathrm{30}{a}−\mathrm{1}\Rightarrow{n}=\mathrm{30}{a}+\mathrm{29} \\ $$$$\begin{array}{|c|}{\mathrm{29}}&\hline{\mathrm{59}}&\hline{\mathrm{89}}&\hline{...}&\hline{\mathrm{3}{a}+\mathrm{29}}&\hline{...}\\\hline\end{array} \\ $$$$ \\ $$$${n}=\mathrm{30}{a}\:,\:\mathrm{30}{a}+\mathrm{5}\:,\:\mathrm{30}{a}+\mathrm{9}\:,\:\mathrm{30}{a}+\mathrm{14}\:, \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{30}{a}+\mathrm{15}\:,\:\mathrm{30}{a}+\mathrm{20}\:,\:\mathrm{30}{a}+\mathrm{24}\:,\:\mathrm{30}{a}+\mathrm{29}\:\: \\ $$$$\:\:\:\:\:\:\:{Where}\:{a}=\mathrm{0},\mathrm{1},\mathrm{2},... \\ $$ | ||
Commented by Rasheed.Sindhi last updated on 21/Feb/22 | ||
$${You}'{re}\:{welcome}! \\ $$ | ||
Commented by SANOGO last updated on 21/Feb/22 | ||
$${merci}\:{bien} \\ $$ | ||
Answered by Rasheed.Sindhi last updated on 21/Feb/22 | ||
$${n}^{\mathrm{2}} +{n}\equiv\mathrm{0}\left[\mathrm{30}\right]\Rightarrow{n}^{\mathrm{2}} \equiv−{n}\left[\mathrm{30}\right] \\ $$$$\Rightarrow{n}^{\mathrm{2}} \equiv\mathrm{30}−{n}\left[\mathrm{30}\right] \\ $$$$\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}{{n}}&\hline{{n}^{\mathrm{2}} \left[\mathrm{30}\right]}&\hline{\left(\mathrm{30}−{n}\right)\left[\mathrm{30}\right]}\\{\underline{\mathrm{0}}}&\hline{\mathrm{0}}&\hline{\mathrm{0}}\\{\mathrm{1}}&\hline{\mathrm{1}}&\hline{\mathrm{29}}\\{\mathrm{2}}&\hline{\mathrm{4}}&\hline{\mathrm{28}}\\{\mathrm{3}}&\hline{\mathrm{9}}&\hline{\mathrm{27}}\\{\mathrm{4}}&\hline{\mathrm{16}}&\hline{\mathrm{26}}\\{\underline{\mathrm{5}}}&\hline{\mathrm{25}}&\hline{\mathrm{25}}\\{\mathrm{6}}&\hline{\mathrm{6}}&\hline{\mathrm{24}}\\{\mathrm{7}}&\hline{\mathrm{19}}&\hline{\mathrm{23}}\\{\mathrm{8}}&\hline{\mathrm{4}}&\hline{\mathrm{22}}\\{\underline{\mathrm{9}}}&\hline{\mathrm{21}}&\hline{\mathrm{21}}\\{\mathrm{10}}&\hline{\mathrm{10}}&\hline{\mathrm{20}}\\{\mathrm{11}}&\hline{\mathrm{1}}&\hline{\mathrm{19}}\\{\mathrm{12}}&\hline{\mathrm{24}}&\hline{\mathrm{18}}\\{\mathrm{13}}&\hline{\mathrm{19}}&\hline{\mathrm{17}}\\{\underline{\mathrm{14}}}&\hline{\mathrm{16}}&\hline{\mathrm{16}}\\{\underline{\mathrm{15}}}&\hline{\mathrm{15}}&\hline{\mathrm{15}}\\{\mathrm{16}}&\hline{\mathrm{19}}&\hline{\mathrm{14}}\\{\mathrm{17}}&\hline{\mathrm{19}}&\hline{\mathrm{13}}\\{\mathrm{18}}&\hline{\mathrm{24}}&\hline{\mathrm{12}}\\{\mathrm{19}}&\hline{\mathrm{1}}&\hline{\mathrm{11}}\\{\underline{\mathrm{20}}}&\hline{\mathrm{10}}&\hline{\mathrm{10}}\\{\mathrm{21}}&\hline{\mathrm{21}}&\hline{\mathrm{9}}\\{\mathrm{22}}&\hline{\mathrm{4}}&\hline{\mathrm{8}}\\{\mathrm{23}}&\hline{\mathrm{19}}&\hline{\mathrm{7}}\\{\underline{\mathrm{24}}}&\hline{\mathrm{6}}&\hline{\mathrm{6}}\\{\mathrm{25}}&\hline{\mathrm{25}}&\hline{\mathrm{5}}\\{\mathrm{26}}&\hline{\mathrm{16}}&\hline{\mathrm{4}}\\{\mathrm{27}}&\hline{\mathrm{9}}&\hline{\mathrm{3}}\\{\mathrm{28}}&\hline{\mathrm{4}}&\hline{\mathrm{2}}\\{\underline{\mathrm{29}}}&\hline{\mathrm{1}}&\hline{\mathrm{1}}\\\hline\end{array} \\ $$$${n}=\mathrm{0},\mathrm{5},\mathrm{9},\mathrm{14},\mathrm{15},\mathrm{20},\mathrm{24},\mathrm{29} \\ $$$${In}\:{general}: \\ $$$$\mathrm{30}{k},\mathrm{30}{k}+\mathrm{5},\mathrm{30}{k}+\mathrm{9},\mathrm{30}{k}+\mathrm{14}, \\ $$$$\mathrm{30}{k}+\mathrm{15},\mathrm{30}{k}+\mathrm{20},\mathrm{30}{k}+\mathrm{24},\mathrm{30}{k}+\mathrm{29} \\ $$$${for}\:{k}=\mathrm{0},\mathrm{1},\mathrm{2},... \\ $$ | ||