Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 188806 by horsebrand11 last updated on 07/Mar/23

Find minimum value of     2x^2 +2xy+4y+5y^2 −x    for x and y real numbers

$${Find}\:{minimum}\:{value}\:{of}\: \\ $$$$\:\:\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{xy}+\mathrm{4}{y}+\mathrm{5}{y}^{\mathrm{2}} −{x}\: \\ $$$$\:{for}\:{x}\:{and}\:{y}\:{real}\:{numbers} \\ $$

Answered by mr W last updated on 07/Mar/23

Method I  k=2x^2 +2xy+4y+5y^2 −x  2x^2 +(2y−1)x+5y^2 +4y−k=0  Δ=(2y−1)^2 −8(5y^2 +4y−k)≥0  −36y^2 −36y+8k+1≥0  36y^2 +36y−8k−1≤0  Δ=36^2 +4×36(8k+1)≥0  ⇒k≥−(5/4)  (2x^2 +2xy+4y+5y^2 −x)_(min) =−(5/4)

$$\boldsymbol{{Method}}\:\boldsymbol{{I}} \\ $$$${k}=\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{xy}+\mathrm{4}{y}+\mathrm{5}{y}^{\mathrm{2}} −{x} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} +\left(\mathrm{2}{y}−\mathrm{1}\right){x}+\mathrm{5}{y}^{\mathrm{2}} +\mathrm{4}{y}−{k}=\mathrm{0} \\ $$$$\Delta=\left(\mathrm{2}{y}−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{8}\left(\mathrm{5}{y}^{\mathrm{2}} +\mathrm{4}{y}−{k}\right)\geqslant\mathrm{0} \\ $$$$−\mathrm{36}{y}^{\mathrm{2}} −\mathrm{36}{y}+\mathrm{8}{k}+\mathrm{1}\geqslant\mathrm{0} \\ $$$$\mathrm{36}{y}^{\mathrm{2}} +\mathrm{36}{y}−\mathrm{8}{k}−\mathrm{1}\leqslant\mathrm{0} \\ $$$$\Delta=\mathrm{36}^{\mathrm{2}} +\mathrm{4}×\mathrm{36}\left(\mathrm{8}{k}+\mathrm{1}\right)\geqslant\mathrm{0} \\ $$$$\Rightarrow{k}\geqslant−\frac{\mathrm{5}}{\mathrm{4}} \\ $$$$\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{xy}+\mathrm{4}{y}+\mathrm{5}{y}^{\mathrm{2}} −{x}\right)_{{min}} =−\frac{\mathrm{5}}{\mathrm{4}} \\ $$

Answered by mr W last updated on 07/Mar/23

Method II  k=2x^2 +2xy+4y+5y^2 −x  (∂k/∂x)=4x+2y−1=0   ...(i)  (∂k/∂y)=2x+4+10y=0   ...(ii)  ⇒x=(1/2), y=−(1/2)  k_(min) =2×(1/4)−(1/2)−2+(5/4)−(1/2)=−(5/4) ✓  (it′s minimum, because (∂^2 k/∂x^2 )>0, (∂^2 k/∂y^2 )>0)

$$\boldsymbol{{Method}}\:\boldsymbol{{II}} \\ $$$${k}=\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{xy}+\mathrm{4}{y}+\mathrm{5}{y}^{\mathrm{2}} −{x} \\ $$$$\frac{\partial{k}}{\partial{x}}=\mathrm{4}{x}+\mathrm{2}{y}−\mathrm{1}=\mathrm{0}\:\:\:...\left({i}\right) \\ $$$$\frac{\partial{k}}{\partial{y}}=\mathrm{2}{x}+\mathrm{4}+\mathrm{10}{y}=\mathrm{0}\:\:\:...\left({ii}\right) \\ $$$$\Rightarrow{x}=\frac{\mathrm{1}}{\mathrm{2}},\:{y}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${k}_{{min}} =\mathrm{2}×\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{2}+\frac{\mathrm{5}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{2}}=−\frac{\mathrm{5}}{\mathrm{4}}\:\checkmark \\ $$$$\left({it}'{s}\:{minimum},\:{because}\:\frac{\partial^{\mathrm{2}} {k}}{\partial{x}^{\mathrm{2}} }>\mathrm{0},\:\frac{\partial^{\mathrm{2}} {k}}{\partial{y}^{\mathrm{2}} }>\mathrm{0}\right) \\ $$

Commented by ARUNG_Brandon_MBU last updated on 07/Mar/23

Sir can you check my reply on your comment in Q188362

Commented by mr W last updated on 07/Mar/23

yes, you got the right result! thanks!  sorry, i don′t get notified about your  reply.

$${yes},\:{you}\:{got}\:{the}\:{right}\:{result}!\:{thanks}! \\ $$$${sorry},\:{i}\:{don}'{t}\:{get}\:{notified}\:{about}\:{your} \\ $$$${reply}. \\ $$

Commented by ARUNG_Brandon_MBU last updated on 07/Mar/23

OK Sir.  Me too. I don′t get notified about replies.

$$\mathrm{OK}\:\mathrm{Sir}. \\ $$$$\mathrm{Me}\:\mathrm{too}.\:\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{get}\:\mathrm{notified}\:\mathrm{about}\:\mathrm{replies}. \\ $$

Commented by mr W last updated on 08/Mar/23

can you check my answer in Q111118  with a program? thanks sir!

$${can}\:{you}\:{check}\:{my}\:{answer}\:{in}\:{Q}\mathrm{111118} \\ $$$${with}\:{a}\:{program}?\:{thanks}\:{sir}! \\ $$

Commented by ARUNG_Brandon_MBU last updated on 09/Mar/23

The system says "Question deleted from forum."

Commented by mr W last updated on 09/Mar/23

sorry the question # is 188879.  i mistook the ID of that user for the  question number.

$${sorry}\:{the}\:{question}\:#\:{is}\:\mathrm{188879}. \\ $$$${i}\:{mistook}\:{the}\:{ID}\:{of}\:{that}\:{user}\:{for}\:{the} \\ $$$${question}\:{number}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com