Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 31707 by gunawan last updated on 13/Mar/18

Find lim_(x→∞)  Σ_(k=1) ^(n) (1/n)sin((2π)/n)

$$\mathrm{Find}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\Sigma}}\frac{\mathrm{1}}{{n}}\mathrm{sin}\frac{\mathrm{2}\pi}{{n}}\: \\ $$

Commented by abdo imad last updated on 18/Mar/18

i think the Q.is find lim_(n→∞)  Σ_(k=1) ^n  (1/n) sin(((2kπ)/n))  let put S_n =Σ_(k=1) ^n  (1/n)sin(((2kπ)/n)) we have  S_n =(1/(2π)) ((2π)/n) Σ_(k=1) ^n  sin(k ((2π)/n))→(1/(2π)) ∫_0 ^(2π)  sinx dx  =(1/(2π))[−cosx]_0 ^(2π)   =0 ⇒lim_(n→∞)  S_n =0

$${i}\:{think}\:{the}\:{Q}.{is}\:{find}\:{lim}_{{n}\rightarrow\infty} \:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{n}}\:{sin}\left(\frac{\mathrm{2}{k}\pi}{{n}}\right) \\ $$$${let}\:{put}\:{S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{n}}{sin}\left(\frac{\mathrm{2}{k}\pi}{{n}}\right)\:{we}\:{have} \\ $$$${S}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}\pi}\:\frac{\mathrm{2}\pi}{{n}}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{sin}\left({k}\:\frac{\mathrm{2}\pi}{{n}}\right)\rightarrow\frac{\mathrm{1}}{\mathrm{2}\pi}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:{sinx}\:{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\pi}\left[−{cosx}\right]_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:=\mathrm{0}\:\Rightarrow{lim}_{{n}\rightarrow\infty} \:{S}_{{n}} =\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com