Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 205534 by hardmath last updated on 23/Mar/24

Find:  lim_(n→∞)  ∫_0 ^( 1)  n x^n  e^x^2   dx = ?

$$\mathrm{Find}: \\ $$$$\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\mathrm{n}\:\mathrm{x}^{\boldsymbol{\mathrm{n}}} \:\mathrm{e}^{\boldsymbol{\mathrm{x}}^{\mathrm{2}} } \:\mathrm{dx}\:=\:? \\ $$

Answered by Berbere last updated on 24/Mar/24

I_0 =0  I_1 =(1/2)(e−1)  (I_n /n)=∫_0 ^1 x^n e^x^2  ≤e∫_0 ^1 x^n =(e/(n+1))→0....(E)  I_(n+1) =^(IBP) (n+1)∫_0 ^1 x^(n+1) e^x^2  dx=(n+1)[_0 ^1 (e^x^2  /2)x^n ]−((n(n+1))/2)∫_0 ^1 x^(n−1) e^x^2  dx  “x^(n+1) e^x^2  =(x^n )_u .(xe^x^2  )_(v′) ”  =(n+1)(e/2)−(((n+1)n)/(2(n−1)))I_(n−1)   (I_(n+1) /(n+1))=(e/2)−(n/2).(I_(n−1) /(n−1));applie (E),(I_(n+1) /(n+1))→^∞ 0  (I_(n+1) /(n+1))→0⇒lim_(n→∞) (I_(n−1) /(n−1)).(n/e)=1⇒I_(n−1) ∼((e(n−1))/n)→^∞ e

$${I}_{\mathrm{0}} =\mathrm{0} \\ $$$${I}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\left({e}−\mathrm{1}\right) \\ $$$$\frac{{I}_{{n}} }{{n}}=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} {e}^{{x}^{\mathrm{2}} } \leqslant{e}\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} =\frac{{e}}{{n}+\mathrm{1}}\rightarrow\mathrm{0}....\left({E}\right) \\ $$$${I}_{{n}+\mathrm{1}} \overset{{IBP}} {=}\left({n}+\mathrm{1}\right)\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}+\mathrm{1}} {e}^{{x}^{\mathrm{2}} } {dx}=\left({n}+\mathrm{1}\right)\left[_{\mathrm{0}} ^{\mathrm{1}} \frac{{e}^{{x}^{\mathrm{2}} } }{\mathrm{2}}{x}^{{n}} \right]−\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}−\mathrm{1}} {e}^{{x}^{\mathrm{2}} } {dx} \\ $$$$``{x}^{{n}+\mathrm{1}} {e}^{{x}^{\mathrm{2}} } =\left({x}^{{n}} \right)_{{u}} .\left({xe}^{{x}^{\mathrm{2}} } \right)_{{v}'} '' \\ $$$$=\left({n}+\mathrm{1}\right)\frac{{e}}{\mathrm{2}}−\frac{\left({n}+\mathrm{1}\right){n}}{\mathrm{2}\left({n}−\mathrm{1}\right)}{I}_{{n}−\mathrm{1}} \\ $$$$\frac{{I}_{{n}+\mathrm{1}} }{{n}+\mathrm{1}}=\frac{{e}}{\mathrm{2}}−\frac{{n}}{\mathrm{2}}.\frac{{I}_{{n}−\mathrm{1}} }{{n}−\mathrm{1}};{applie}\:\left({E}\right),\frac{{I}_{{n}+\mathrm{1}} }{{n}+\mathrm{1}}\overset{\infty} {\rightarrow}\mathrm{0} \\ $$$$\frac{{I}_{{n}+\mathrm{1}} }{{n}+\mathrm{1}}\rightarrow\mathrm{0}\Rightarrow\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{I}_{{n}−\mathrm{1}} }{{n}−\mathrm{1}}.\frac{{n}}{{e}}=\mathrm{1}\Rightarrow{I}_{{n}−\mathrm{1}} \sim\frac{{e}\left({n}−\mathrm{1}\right)}{{n}}\overset{\infty} {\rightarrow}{e} \\ $$

Commented by hardmath last updated on 24/Mar/24

Yes answer = e, cool dear professor, thankyou

$$\mathrm{Yes}\:\mathrm{answer}\:=\:\mathrm{e},\:\mathrm{cool}\:\mathrm{dear}\:\mathrm{professor},\:\mathrm{thankyou} \\ $$

Commented by Berbere last updated on 24/Mar/24

withe Pleasur

$${withe}\:{Pleasur} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com