Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 132932 by bobhans last updated on 17/Feb/21

Find f(x) such that f(2x)=f(x)

$${Find}\:{f}\left({x}\right)\:{such}\:{that}\:{f}\left(\mathrm{2}{x}\right)={f}\left({x}\right) \\ $$

Answered by Olaf last updated on 17/Feb/21

f(2x) = f(x)  ā‡’ f(x) = f((x/2)) = f((x/4)) = ...f((x/2^n ))...  f(x) = lim_(nā†’āˆž)  f((x/2^n )) = f(0) = constant  If f(0) exists, f is a constant function  and f(x) = f(0)

$${f}\left(\mathrm{2}{x}\right)\:=\:{f}\left({x}\right) \\ $$$$\Rightarrow\:{f}\left({x}\right)\:=\:{f}\left(\frac{{x}}{\mathrm{2}}\right)\:=\:{f}\left(\frac{{x}}{\mathrm{4}}\right)\:=\:...{f}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right)... \\ $$$${f}\left({x}\right)\:=\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{f}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right)\:=\:{f}\left(\mathrm{0}\right)\:=\:\mathrm{constant} \\ $$$$\mathrm{If}\:{f}\left(\mathrm{0}\right)\:\mathrm{exists},\:{f}\:\mathrm{is}\:\mathrm{a}\:\mathrm{constant}\:\mathrm{function} \\ $$$$\mathrm{and}\:{f}\left({x}\right)\:=\:{f}\left(\mathrm{0}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com