Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 29202 by ajfour last updated on 05/Feb/18

Find area between by y=1  and  y=((1−x^2 )/(1+x^2 )) .

$${Find}\:{area}\:{between}\:{by}\:{y}=\mathrm{1}\:\:{and} \\ $$$${y}=\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }\:. \\ $$

Answered by mrW2 last updated on 05/Feb/18

y=((1−x^2 )/(1+x^2 ))=(2/(1+x^2 ))−1  if x→±∞, y→y_(min) =−1  if x=0, y=y_(max) =1  if x=±1, y=0    Area between y=−1 and y=((1−x^2 )/(1+x^2 )):  A=2∫_0 ^(+∞) (y+1)dx  =2∫_0 ^(+∞) ((2/(1+x^2 )))dx  =4∫_0 ^(+∞) ((1/(1+x^2 )))dx  =4[tan^(−1) x]_0 ^(+∞)   =4((π/2)−0)  =2π

$${y}=\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }=\frac{\mathrm{2}}{\mathrm{1}+{x}^{\mathrm{2}} }−\mathrm{1} \\ $$$${if}\:{x}\rightarrow\pm\infty,\:{y}\rightarrow{y}_{{min}} =−\mathrm{1} \\ $$$${if}\:{x}=\mathrm{0},\:{y}={y}_{{max}} =\mathrm{1} \\ $$$${if}\:{x}=\pm\mathrm{1},\:{y}=\mathrm{0} \\ $$$$ \\ $$$${Area}\:{between}\:{y}=−\mathrm{1}\:{and}\:{y}=\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }: \\ $$$${A}=\mathrm{2}\int_{\mathrm{0}} ^{+\infty} \left({y}+\mathrm{1}\right){dx} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{+\infty} \left(\frac{\mathrm{2}}{\mathrm{1}+{x}^{\mathrm{2}} }\right){dx} \\ $$$$=\mathrm{4}\int_{\mathrm{0}} ^{+\infty} \left(\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\right){dx} \\ $$$$=\mathrm{4}\left[\mathrm{tan}^{−\mathrm{1}} {x}\right]_{\mathrm{0}} ^{+\infty} \\ $$$$=\mathrm{4}\left(\frac{\pi}{\mathrm{2}}−\mathrm{0}\right) \\ $$$$=\mathrm{2}\pi \\ $$

Commented by mrW2 last updated on 05/Feb/18

Area between y=1 and y=((1−x^2 )/(1+x^2 )) is ∞.

$${Area}\:{between}\:{y}=\mathrm{1}\:{and}\:{y}=\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }\:{is}\:\infty. \\ $$

Commented by ajfour last updated on 05/Feb/18

I had intended to ask  ∫_(−∞) ^(  ∞) (((x^2 −1)/(x^2 +1)))dx   Sir, this is again  =2π .

$${I}\:{had}\:{intended}\:{to}\:{ask} \\ $$$$\int_{−\infty} ^{\:\:\infty} \left(\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}}\right){dx}\:\:\:{Sir},\:{this}\:{is}\:{again} \\ $$$$=\mathrm{2}\pi\:. \\ $$

Commented by mrW2 last updated on 05/Feb/18

I see.

$${I}\:{see}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com