Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 213887 by efronzo1 last updated on 20/Nov/24

   Find amplitude, period, maximum     and minimum value for function    f(x)= 6 tan ((1/5)x)−8

$$\:\:\:\mathrm{Find}\:\mathrm{amplitude},\:\mathrm{period},\:\mathrm{maximum}\: \\ $$$$\:\:\mathrm{and}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{for}\:\mathrm{function} \\ $$$$\:\:\mathrm{f}\left(\mathrm{x}\right)=\:\mathrm{6}\:\mathrm{tan}\:\left(\frac{\mathrm{1}}{\mathrm{5}}\mathrm{x}\right)−\mathrm{8}\: \\ $$

Answered by alephnull last updated on 08/Jan/25

amplitude=none  period=(π/b)  b = coefficent of x   inside tangent function    b=(π/(1/5))=5π  period=5π    min and max are unbounded so none

$${amplitude}={none} \\ $$$${period}=\frac{\pi}{{b}} \\ $$$${b}\:=\:{coefficent}\:{of}\:{x}\: \\ $$$${inside}\:{tangent}\:{function} \\ $$$$ \\ $$$${b}=\frac{\pi}{\mathrm{1}/\mathrm{5}}=\mathrm{5}\pi \\ $$$${period}=\mathrm{5}\pi \\ $$$$ \\ $$$${min}\:{and}\:{max}\:{are}\:{unbounded}\:{so}\:{none} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com