Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 10856 by Joel576 last updated on 27/Feb/17

Find all the solution that fulfilled the equation below  (1 + (1/x))^(x + 1)  = (1 + (1/(2013)))^(2013)

$$\mathrm{Find}\:\mathrm{all}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{that}\:\mathrm{fulfilled}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{below} \\ $$$$\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{{x}}\right)^{{x}\:+\:\mathrm{1}} \:=\:\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{2013}}\right)^{\mathrm{2013}} \\ $$

Answered by DrDaveR last updated on 12/Mar/17

Just −2014. There can be no positve solution. The function is  monotinically decreasing  so there could be one negative   solution. As (1+1/x)=1/(1−1/(x+1)) then the RHS can be  written (1−1/2014)^(−2013)  which gives the solution.

$${Just}\:−\mathrm{2014}.\:{There}\:{can}\:{be}\:{no}\:{positve}\:{solution}.\:{The}\:{function}\:{is} \\ $$$${monotinically}\:{decreasing}\:\:{so}\:{there}\:{could}\:{be}\:{one}\:{negative}\: \\ $$$${solution}.\:{As}\:\left(\mathrm{1}+\mathrm{1}/{x}\right)=\mathrm{1}/\left(\mathrm{1}−\mathrm{1}/\left({x}+\mathrm{1}\right)\right)\:{then}\:{the}\:{RHS}\:{can}\:{be} \\ $$$${written}\:\left(\mathrm{1}−\mathrm{1}/\mathrm{2014}\right)^{−\mathrm{2013}} \:{which}\:{gives}\:{the}\:{solution}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com