Question Number 215893 by hardmath last updated on 20/Jan/25 | ||
![]() | ||
$$\mathrm{Find}: \\ $$$$\left.\mathrm{1}\right)\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}\:−\:\mathrm{cos2x}}{\mathrm{x}^{\mathrm{2}} }\:=\:? \\ $$$$\left.\mathrm{2}\right)\:\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{n}}=\infty} {\sum}}\:\frac{\mathrm{n}^{\mathrm{2}} }{\mathrm{3}^{\boldsymbol{\mathrm{n}}} }\:=\:? \\ $$ | ||
Answered by mathmax last updated on 23/Jan/25 | ||
![]() | ||
$${cos}\left(\mathrm{2}{x}\right)\sim\mathrm{1}−\frac{\mathrm{4}{x}^{\mathrm{2}} }{\mathrm{2}}\:=\mathrm{1}−\mathrm{2}{x}^{\mathrm{2}} \:\Rightarrow\frac{\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)}{{x}^{\mathrm{2}} }\sim\frac{\mathrm{2}{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} }\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} \frac{\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)}{{x}^{\mathrm{2}} }\:=\mathrm{2} \\ $$$$\left.\mathrm{2}\right){let}\:{S}\left({x}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:{x}^{{n}} \:{and}\:\mid{x}\mid<\mathrm{1}\:\Rightarrow{S}^{'} \left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:{nx}^{{n}−\mathrm{1}} \\ $$$${and}\:{xS}^{'} \left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:{nx}^{{n}} \:\:{by}\:{detivation} \\ $$$${S}^{'} \left({x}\right)\:+{xS}^{\left(\mathrm{2}\right)} \left({x}\right)\:=\Sigma{n}^{\mathrm{2}} {x}^{{n}−\mathrm{1}} \:\Rightarrow \\ $$$${xS}^{'} \left({x}\right)+{x}^{\mathrm{2}} {S}^{\left(\mathrm{2}\right)} \left({x}\right)\:=\sum_{{n}\geqslant\mathrm{1}} \:{n}^{\mathrm{2}} {x}^{{n}} \:\:\: \\ $$$${x}=\frac{\mathrm{1}}{\mathrm{3}}\:\Rightarrow\sum_{{n}=\mathrm{1}} ^{\infty} \frac{{n}^{\mathrm{2}} }{\mathrm{3}^{{n}} }=\frac{\mathrm{1}}{\mathrm{3}}{S}^{'} \left(\frac{\mathrm{1}}{\mathrm{3}}\right)+\frac{\mathrm{1}}{\mathrm{9}}{S}^{\left(\mathrm{2}\right)} \left(\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$${S}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{1}−{x}}\:\Rightarrow{S}^{'} \left({x}\right)=\frac{\mathrm{1}}{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} } \\ $$$${et}\:{S}^{\left(\mathrm{2}\right)} \left({x}\right)=−\mathrm{2}\frac{\left(−\mathrm{1}\right)\left(\mathrm{1}−{x}\right)}{\left(\mathrm{1}−{x}\right)^{\mathrm{4}} }=\frac{\mathrm{2}}{\left(\mathrm{1}−{x}\right)^{\mathrm{3}} } \\ $$$$\Rightarrow{S}^{'} \left(\frac{\mathrm{1}}{\mathrm{3}}\right)=\frac{\mathrm{1}}{\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{2}} }=\frac{\mathrm{9}}{\mathrm{4}} \\ $$$${S}^{\left(\mathrm{2}\right)} \left(\frac{\mathrm{1}}{\mathrm{3}}\right)=\frac{\mathrm{2}}{\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{3}} }=\mathrm{2}×\frac{\mathrm{27}}{\mathrm{8}}\:=\frac{\mathrm{27}}{\mathrm{4}}\:\Rightarrow \\ $$$${S}=\frac{\mathrm{1}}{\mathrm{3}}.\frac{\mathrm{9}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{9}}.\frac{\mathrm{27}}{\mathrm{4}}=\frac{\mathrm{3}}{\mathrm{4}}+\frac{\mathrm{3}}{\mathrm{4}}=\frac{\mathrm{6}}{\mathrm{4}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$ | ||
Answered by AntonCWX last updated on 21/Jan/25 | ||
![]() | ||
$$\left.\mathrm{1}\right) \\ $$$${By}\:{differentiating}\:{numerator}\:{and}\:{denominator}\:{two}\:{times}\:{we}\:{get} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{4}{cos}\left(\mathrm{2}{x}\right)}{\mathrm{2}}\right)=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{2}{cos}\left(\mathrm{2}{x}\right)\right)=\mathrm{2} \\ $$$$ \\ $$ | ||
Commented by hardmath last updated on 21/Jan/25 | ||
![]() | ||
$$\mathrm{1}.\:\mathrm{Answer}:\:\mathrm{1} \\ $$ | ||
Commented by AntonCWX last updated on 21/Jan/25 | ||
![]() | ||
$${Since}\:{you}\:{have}\:{the}\:{answer}. \\ $$$${I}\:{won}'{t}\:{bother}\:{to}\:{solve}\:{the}\:{second}\:{one}. \\ $$ | ||
Commented by mr W last updated on 21/Jan/25 | ||
![]() | ||
$${to}\:{hardmath}: \\ $$$${you}\:{should}\:{show}\:{why}\:{the}\:{answer}\:{for} \\ $$$$\left.\mathrm{1}\right)\:{is}\:\mathrm{1}. \\ $$$${i}\:{think}\:{the}\:{solution}\:{and}\:{result}\:{from} \\ $$$${AntonCWX}\:{sir}\:{is}\:{correct}. \\ $$ | ||
Answered by mr W last updated on 21/Jan/25 | ||
![]() | ||
$$\left.\mathrm{1}\right) \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{2}{x}}{{x}^{\mathrm{2}} } \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:{x}}{{x}^{\mathrm{2}} } \\ $$$$=\mathrm{2}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{sin}\:{x}}{{x}}\right)^{\mathrm{2}} \\ $$$$=\mathrm{2}×\mathrm{1}^{\mathrm{2}} =\mathrm{2}\:\checkmark \\ $$$$ \\ $$$$\left.\mathrm{2}\right) \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{x}^{{n}} =\frac{\mathrm{1}}{\mathrm{1}−{x}}−\mathrm{1} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{nx}^{{n}−\mathrm{1}} =\frac{\mathrm{1}}{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} } \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{nx}^{{n}} =\frac{{x}}{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} } \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{n}^{\mathrm{2}} {x}^{{n}−\mathrm{1}} =\frac{\mathrm{1}}{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }+\frac{\mathrm{2}{x}}{\left(\mathrm{1}−{x}\right)^{\mathrm{3}} } \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{n}^{\mathrm{2}} {x}^{{n}} =\frac{{x}}{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }+\frac{\mathrm{2}{x}^{\mathrm{2}} }{\left(\mathrm{1}−{x}\right)^{\mathrm{3}} }=\frac{{x}\left(\mathrm{1}+{x}\right)}{\left(\mathrm{1}−{x}\right)^{\mathrm{3}} } \\ $$$${set}\:{x}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{2}} }{\mathrm{3}^{{n}} }=\frac{\frac{\mathrm{1}}{\mathrm{3}}×\frac{\mathrm{4}}{\mathrm{3}}}{\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{3}} }=\frac{\mathrm{3}}{\mathrm{2}}\:\checkmark \\ $$ | ||
Answered by MathematicalUser2357 last updated on 21/Jan/25 | ||
![]() | ||
$${the}\:{first}\:{one}:\:\mathrm{1} \\ $$$${the}\:{second}\:{one}:\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$ | ||