Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 159292 by HongKing last updated on 15/Nov/21

Find:  𝛀 =∫_( 0) ^( ∞) ((x arctan(x))/((x + 1)(x^2  + 1))) dx

$$\mathrm{Find}:\:\:\boldsymbol{\Omega}\:=\underset{\:\mathrm{0}} {\overset{\:\infty} {\int}}\frac{\mathrm{x}\:\mathrm{arctan}\left(\mathrm{x}\right)}{\left(\mathrm{x}\:+\:\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{1}\right)}\:\mathrm{dx} \\ $$$$ \\ $$

Answered by mindispower last updated on 15/Nov/21

=∫_0 ^∞ ((arctan(x))/(1+x^2 ))βˆ’((arctan(x))/((1+x)(1+x^2 )))dx  =(Ο€^2 /8)βˆ’βˆ«_0 ^(Ο€/2) ((xcos(x))/(cos(x)+sin(x)))dx∣_(=A)   B=∫_0 ^(Ο€/2) ((xsin(x))/(sin(x)+cos(x)))  A+B=(Ο€^2 /8)  Aβˆ’B=∫_0 ^(Ο€/2) ((x(cos(x)βˆ’sin(x)))/(cos(x)+sin(x)))dx  =[xln(cos(x)+sin(x))]_0 ^(Ο€/2) βˆ’βˆ«_0 ^(Ο€/2) ln(cos(x)+sin(x){dx  =βˆ’βˆ«_0 ^(Ο€/2) ln((√2)sin(x+(Ο€/4)))d=βˆ’(Ο€/2)ln((√2))βˆ’βˆ«_(Ο€/4) ^((3Ο€)/4) ln(sin(x))dx  =βˆ’βˆ«_(Ο€/4) ^(Ο€/2) ln(sin(x))dxβˆ’βˆ«_0 ^(Ο€/4) lncos(x)  =βˆ’2∫_0 ^(Ο€/4) ln(cos(x))dx=βˆ’2.(1/4)(2Gβˆ’Ο€ln(2))  catalan constant  A=(1/2)(Aβˆ’B+A+B)=(1/2)((Ο€^2 /8)βˆ’(Ο€/2)ln((√2))βˆ’G+(Ο€/2)ln(2))  =(Ο€^2 /(16))+(Ο€/8)ln(2)βˆ’(G/2)  Ξ©=(Ο€^2 /(16))+(G/2)βˆ’((Ο€ln(2))/8)

$$=\int_{\mathrm{0}} ^{\infty} \frac{{arctan}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }βˆ’\frac{{arctan}\left({x}\right)}{\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{8}}βˆ’\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{xcos}\left({x}\right)}{{cos}\left({x}\right)+{sin}\left({x}\right)}{dx}\mid_{={A}} \\ $$$${B}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{xsin}\left({x}\right)}{{sin}\left({x}\right)+{cos}\left({x}\right)} \\ $$$${A}+{B}=\frac{\pi^{\mathrm{2}} }{\mathrm{8}} \\ $$$${A}βˆ’{B}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{x}\left({cos}\left({x}\right)βˆ’{sin}\left({x}\right)\right)}{{cos}\left({x}\right)+{sin}\left({x}\right)}{dx} \\ $$$$=\left[{xln}\left({cos}\left({x}\right)+{sin}\left({x}\right)\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} βˆ’\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({cos}\left({x}\right)+{sin}\left({x}\right)\left\{{dx}\right.\right. \\ $$$$=βˆ’\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\sqrt{\mathrm{2}}{sin}\left({x}+\frac{\pi}{\mathrm{4}}\right)\right){d}=βˆ’\frac{\pi}{\mathrm{2}}{ln}\left(\sqrt{\mathrm{2}}\right)βˆ’\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\mathrm{3}\pi}{\mathrm{4}}} {ln}\left({sin}\left({x}\right)\right){dx} \\ $$$$=βˆ’\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sin}\left({x}\right)\right){dx}βˆ’\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {lncos}\left({x}\right) \\ $$$$=βˆ’\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({cos}\left({x}\right)\right){dx}=βˆ’\mathrm{2}.\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{2}{G}βˆ’\pi{ln}\left(\mathrm{2}\right)\right) \\ $$$${catalan}\:{constant} \\ $$$${A}=\frac{\mathrm{1}}{\mathrm{2}}\left({A}βˆ’{B}+{A}+{B}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\pi^{\mathrm{2}} }{\mathrm{8}}βˆ’\frac{\pi}{\mathrm{2}}{ln}\left(\sqrt{\mathrm{2}}\right)βˆ’{G}+\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right)\right) \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{16}}+\frac{\pi}{\mathrm{8}}{ln}\left(\mathrm{2}\right)βˆ’\frac{{G}}{\mathrm{2}} \\ $$$$\Omega=\frac{\pi^{\mathrm{2}} }{\mathrm{16}}+\frac{{G}}{\mathrm{2}}βˆ’\frac{\pi{ln}\left(\mathrm{2}\right)}{\mathrm{8}} \\ $$$$ \\ $$

Commented by HongKing last updated on 15/Nov/21

cool my dear Ser thank you so much

$$\mathrm{cool}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{Ser}\:\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much} \\ $$

Commented by mindispower last updated on 15/Nov/21

you are welcom  have a nice day

$${you}\:{are}\:{welcom} \\ $$$${have}\:{a}\:{nice}\:{day} \\ $$$$ \\ $$

Commented by HongKing last updated on 15/Nov/21

thank you very much my dear Ser

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{my}\:\mathrm{dear}\:\boldsymbol{\mathrm{S}}\mathrm{er} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com