Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 207170 by hardmath last updated on 08/May/24

Find:   ∫_0 ^( 4)  (√(16 − x^2 )) dx = ?

$$\mathrm{Find}:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{4}} \:\sqrt{\mathrm{16}\:−\:\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx}\:=\:? \\ $$

Commented by MM42 last updated on 08/May/24

x=4sinθ⇒dx=4cosθdθ  ∫_0 ^(π/2)  16cos^2 θdθ=∫_0 ^(π/2) 8(1+cos2θ)dθ  =8(θ+(1/2)sin2θ)]_0 ^(π/2)   =4π  ✓

$${x}=\mathrm{4}{sin}\theta\Rightarrow{dx}=\mathrm{4}{cos}\theta{d}\theta \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{16}{cos}^{\mathrm{2}} \theta{d}\theta=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{8}\left(\mathrm{1}+{cos}\mathrm{2}\theta\right){d}\theta \\ $$$$\left.=\mathrm{8}\left(\theta+\frac{\mathrm{1}}{\mathrm{2}}{sin}\mathrm{2}\theta\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$=\mathrm{4}\pi\:\:\checkmark \\ $$$$ \\ $$

Commented by hardmath last updated on 08/May/24

Answer:  4π

$$\mathrm{Answer}:\:\:\mathrm{4}\pi \\ $$

Commented by MM42 last updated on 08/May/24

★  ∫_0 ^a (√(a^2 −x^2  ))=^(x=asinθ) ∫_0 ^(π/2) a^2 cos^2 θdθ  =(((πa^2 )/4))  ✓

$$\bigstar \\ $$$$\int_{\mathrm{0}} ^{{a}} \sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} \:}\overset{{x}={asin}\theta} {=}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {a}^{\mathrm{2}} {cos}^{\mathrm{2}} \theta{d}\theta \\ $$$$=\left(\frac{\pi{a}^{\mathrm{2}} }{\mathrm{4}}\right)\:\:\checkmark \\ $$$$ \\ $$

Commented by hardmath last updated on 10/May/24

thank you dear professor

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{professor} \\ $$

Answered by Skabetix last updated on 09/May/24

=∫_0 ^4 (√(4^2 −x^2 ))  Or ∫_0 ^a (√(a^2 −x^2  ))dx=(a^2 /4)π  So here ∫_0 ^4 (√(4^2 −x^2 ))dx=(4^2 /4)π=((16)/4)π=4π

$$=\int_{\mathrm{0}} ^{\mathrm{4}} \sqrt{\mathrm{4}^{\mathrm{2}} −{x}^{\mathrm{2}} } \\ $$$${Or}\:\int_{\mathrm{0}} ^{{a}} \sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} \:}{dx}=\frac{{a}^{\mathrm{2}} }{\mathrm{4}}\pi \\ $$$${So}\:{here}\:\int_{\mathrm{0}} ^{\mathrm{4}} \sqrt{\mathrm{4}^{\mathrm{2}} −{x}^{\mathrm{2}} }{dx}=\frac{\mathrm{4}^{\mathrm{2}} }{\mathrm{4}}\pi=\frac{\mathrm{16}}{\mathrm{4}}\pi=\mathrm{4}\pi \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com