Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 211370 by liuxinnan last updated on 07/Sep/24

F(0)=0       F(1)=1    F(n+1)=F(n)+F(n−1)  prove:  (1/(89))=Σ_(i=1) ^(+∞) 10^(−i) F(i−1)

$${F}\left(\mathrm{0}\right)=\mathrm{0}\:\:\:\:\:\:\:{F}\left(\mathrm{1}\right)=\mathrm{1}\:\:\:\:{F}\left({n}+\mathrm{1}\right)={F}\left({n}\right)+{F}\left({n}−\mathrm{1}\right) \\ $$$${prove}: \\ $$$$\frac{\mathrm{1}}{\mathrm{89}}=\underset{{i}=\mathrm{1}} {\overset{+\infty} {\sum}}\mathrm{10}^{−{i}} {F}\left({i}−\mathrm{1}\right) \\ $$

Answered by mr W last updated on 07/Sep/24

p^2 −p−1=0  ⇒p=((1±(√5))/2)  ⇒F(n)=A(((1+(√5))/2))^n +B(((1−(√5))/2))^n   F(0)=A+B=0⇒B=−A  F(1)=A(((1+(√5))/2))−A(((1−(√5))/2))=1 ⇒A=(1/( (√5)))  ⇒F(n)=(1/( (√5)))[(((1+(√5))/2))^n −(((1−(√5))/2))^n ]  Σ_(n=1) ^∞ 10^(−n) F(n−1)  =Σ_(n=0) ^∞ 10^(−(n+1)) F(n)  =(1/(10(√5)))Σ_(n=0) ^∞ (1/(10^n ))[(((1+(√5))/2))^n −(((1−(√5))/2))^n ]  =(1/(10(√5)))Σ_(n=0) ^∞ [(((1+(√5))/(20)))^n −(((1−(√5))/(20)))^n ]  =(1/(10(√5)))((1/(1−((1+(√5))/(20))))−(1/(1−((1−(√5))/(20)))))  =(2/( (√5)))(((19+(√5))/(356))−((19−(√5))/(356)))  =(2/( (√5)))(((2(√5))/(356)))  =(1/(89)) ✓

$${p}^{\mathrm{2}} −{p}−\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow{p}=\frac{\mathrm{1}\pm\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\Rightarrow{F}\left({n}\right)={A}\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} +{B}\left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} \\ $$$${F}\left(\mathrm{0}\right)={A}+{B}=\mathrm{0}\Rightarrow{B}=−{A} \\ $$$${F}\left(\mathrm{1}\right)={A}\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)−{A}\left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)=\mathrm{1}\:\Rightarrow{A}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}} \\ $$$$\Rightarrow{F}\left({n}\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left[\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} −\left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} \right] \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{10}^{−{n}} {F}\left({n}−\mathrm{1}\right) \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\mathrm{10}^{−\left({n}+\mathrm{1}\right)} {F}\left({n}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{10}\sqrt{\mathrm{5}}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{10}^{{n}} }\left[\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} −\left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} \right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{10}\sqrt{\mathrm{5}}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left[\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{20}}\right)^{{n}} −\left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{20}}\right)^{{n}} \right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{10}\sqrt{\mathrm{5}}}\left(\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{20}}}−\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{20}}}\right) \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}\left(\frac{\mathrm{19}+\sqrt{\mathrm{5}}}{\mathrm{356}}−\frac{\mathrm{19}−\sqrt{\mathrm{5}}}{\mathrm{356}}\right) \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}\left(\frac{\mathrm{2}\sqrt{\mathrm{5}}}{\mathrm{356}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{89}}\:\checkmark \\ $$

Commented by liuxinnan last updated on 09/Sep/24

thanks sir

$${thanks}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com