Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 7191 by Tawakalitu. last updated on 15/Aug/16

Evaluate     Σ ((sin(3n))/n)     from  1  to  infinity

$${Evaluate}\:\:\:\:\:\Sigma\:\frac{{sin}\left(\mathrm{3}{n}\right)}{{n}}\:\:\:\:\:{from}\:\:\mathrm{1}\:\:{to}\:\:{infinity}\: \\ $$

Answered by Yozzia last updated on 15/Aug/16

Define the function   f(x)=x for 0<x<1 , period=2.  For Fourier series of f having the form  (1) f(x)=(a_0 /2)+Σ_(n=1) ^∞ {a_n cos((nπx)/L)+b_n sin((nπx)/L)},  2L=2=period⇒L=1,  a_0 =(1/L)∫_c ^( c+2L) f(x) dx , c∈R.  ∴ For c=0, a_0 =(1/1)∫_0 ^( 2) xdx=(x^2 /2)∣_0 ^2 =2  ⇒(a_0 /2)=1.  a_n =(1/L)∫_c ^(c+2L) f(x)cos((nπx)/L)dx  n=1,2,3,...  Let c=0. ∴ a_n =(1/1)∫_0 ^( 2) xcosnπx dx  a_n =(x/(nπ))sinnπx∣_0 ^2 −∫_0 ^2 (1/(nπ))sinnπxdx  a_n =(1/(n^2 π^2 ))cosnπx∣_0 ^2 =(1/(n^2 π^2 ))(cos2nπ−1)=0  b_n =(1/L)∫_c ^( c+2L) f(x)sin((nπx)/L)dx  (n=1,2,3,...)  Take c=0. ∴ b_n =(1/1)∫_0 ^( 2) xsinnπx dx  b_n =((−xcosnπx)/(nπ))∣_0 ^2 −∫_0 ^2 ((−cosnπx)/(nπ))dx  b_n =((−2)/(nπ))+[(1/(n^2 π^2 ))sinnπx]_0 ^2   b_n =((−2)/(nπ))+0=((−2)/(nπ))  (n≠0).  ∴ in (1)  x=1+Σ_(n=1) ^∞ ((−2sinnπx)/(nπ))  x=1−(2/π)Σ_(n=1) ^∞ ((sinnπx)/n)  Let x=(3/π)∉Z (If x∈Z, x is a point of   discontinuity whose output is given by  ((f(x+0)+f(x−0))/2))  ∴ (3/π)=1−(2/π)Σ_(n=1) ^∞ ((sin3n)/n)  ⇒Σ_(n=1) ^∞ ((sin3n)/n)=(π/2)(1−(3/π))  Σ_(n=1) ^∞ ((sin3n)/n)=((π−3)/2)

$${Define}\:{the}\:{function}\: \\ $$$${f}\left({x}\right)={x}\:{for}\:\mathrm{0}<{x}<\mathrm{1}\:,\:{period}=\mathrm{2}. \\ $$$${For}\:{Fourier}\:{series}\:{of}\:{f}\:{having}\:{the}\:{form} \\ $$$$\left(\mathrm{1}\right)\:{f}\left({x}\right)=\frac{{a}_{\mathrm{0}} }{\mathrm{2}}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left\{{a}_{{n}} {cos}\frac{{n}\pi{x}}{{L}}+{b}_{{n}} {sin}\frac{{n}\pi{x}}{{L}}\right\}, \\ $$$$\mathrm{2}{L}=\mathrm{2}={period}\Rightarrow{L}=\mathrm{1}, \\ $$$${a}_{\mathrm{0}} =\frac{\mathrm{1}}{{L}}\int_{{c}} ^{\:{c}+\mathrm{2}{L}} {f}\left({x}\right)\:{dx}\:,\:{c}\in\mathbb{R}. \\ $$$$\therefore\:{For}\:{c}=\mathrm{0},\:{a}_{\mathrm{0}} =\frac{\mathrm{1}}{\mathrm{1}}\int_{\mathrm{0}} ^{\:\mathrm{2}} {xdx}=\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\mid_{\mathrm{0}} ^{\mathrm{2}} =\mathrm{2} \\ $$$$\Rightarrow\frac{{a}_{\mathrm{0}} }{\mathrm{2}}=\mathrm{1}. \\ $$$${a}_{{n}} =\frac{\mathrm{1}}{{L}}\int_{{c}} ^{{c}+\mathrm{2}{L}} {f}\left({x}\right){cos}\frac{{n}\pi{x}}{{L}}{dx}\:\:{n}=\mathrm{1},\mathrm{2},\mathrm{3},... \\ $$$${Let}\:{c}=\mathrm{0}.\:\therefore\:{a}_{{n}} =\frac{\mathrm{1}}{\mathrm{1}}\int_{\mathrm{0}} ^{\:\mathrm{2}} {xcosn}\pi{x}\:{dx} \\ $$$${a}_{{n}} =\frac{{x}}{{n}\pi}{sinn}\pi{x}\mid_{\mathrm{0}} ^{\mathrm{2}} −\int_{\mathrm{0}} ^{\mathrm{2}} \frac{\mathrm{1}}{{n}\pi}{sinn}\pi{xdx} \\ $$$${a}_{{n}} =\frac{\mathrm{1}}{{n}^{\mathrm{2}} \pi^{\mathrm{2}} }{cosn}\pi{x}\mid_{\mathrm{0}} ^{\mathrm{2}} =\frac{\mathrm{1}}{{n}^{\mathrm{2}} \pi^{\mathrm{2}} }\left({cos}\mathrm{2}{n}\pi−\mathrm{1}\right)=\mathrm{0} \\ $$$${b}_{{n}} =\frac{\mathrm{1}}{{L}}\int_{{c}} ^{\:{c}+\mathrm{2}{L}} {f}\left({x}\right){sin}\frac{{n}\pi{x}}{{L}}{dx}\:\:\left({n}=\mathrm{1},\mathrm{2},\mathrm{3},...\right) \\ $$$${Take}\:{c}=\mathrm{0}.\:\therefore\:{b}_{{n}} =\frac{\mathrm{1}}{\mathrm{1}}\int_{\mathrm{0}} ^{\:\mathrm{2}} {xsinn}\pi{x}\:{dx} \\ $$$${b}_{{n}} =\frac{−{xcosn}\pi{x}}{{n}\pi}\mid_{\mathrm{0}} ^{\mathrm{2}} −\int_{\mathrm{0}} ^{\mathrm{2}} \frac{−{cosn}\pi{x}}{{n}\pi}{dx} \\ $$$${b}_{{n}} =\frac{−\mathrm{2}}{{n}\pi}+\left[\frac{\mathrm{1}}{{n}^{\mathrm{2}} \pi^{\mathrm{2}} }{sinn}\pi{x}\right]_{\mathrm{0}} ^{\mathrm{2}} \\ $$$${b}_{{n}} =\frac{−\mathrm{2}}{{n}\pi}+\mathrm{0}=\frac{−\mathrm{2}}{{n}\pi}\:\:\left({n}\neq\mathrm{0}\right). \\ $$$$\therefore\:{in}\:\left(\mathrm{1}\right) \\ $$$${x}=\mathrm{1}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{−\mathrm{2}{sinn}\pi{x}}{{n}\pi} \\ $$$${x}=\mathrm{1}−\frac{\mathrm{2}}{\pi}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{sinn}\pi{x}}{{n}} \\ $$$${Let}\:{x}=\frac{\mathrm{3}}{\pi}\notin\mathbb{Z}\:\left({If}\:{x}\in\mathbb{Z},\:{x}\:{is}\:{a}\:{point}\:{of}\:\right. \\ $$$${discontinuity}\:{whose}\:{output}\:{is}\:{given}\:{by} \\ $$$$\left.\frac{{f}\left({x}+\mathrm{0}\right)+{f}\left({x}−\mathrm{0}\right)}{\mathrm{2}}\right) \\ $$$$\therefore\:\frac{\mathrm{3}}{\pi}=\mathrm{1}−\frac{\mathrm{2}}{\pi}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{sin}\mathrm{3}{n}}{{n}} \\ $$$$\Rightarrow\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{sin}\mathrm{3}{n}}{{n}}=\frac{\pi}{\mathrm{2}}\left(\mathrm{1}−\frac{\mathrm{3}}{\pi}\right) \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{sin}\mathrm{3}{n}}{{n}}=\frac{\pi−\mathrm{3}}{\mathrm{2}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by Tawakalitu. last updated on 15/Aug/16

Am very happy. Thank you sir. i really appreciate.

$${Am}\:{very}\:{happy}.\:{Thank}\:{you}\:{sir}.\:{i}\:{really}\:{appreciate}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com