Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 69110 by Fawole last updated on 20/Sep/19

Evaluate ∫_(−∞) ^∞ ((cos(x))/(x^2 +1))dx

$${Evaluate}\:\int_{−\infty} ^{\infty} \frac{{cos}\left({x}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$

Commented by mathmax by abdo last updated on 20/Sep/19

  let I =∫_(−∞) ^(+∞)  ((cosx)/(x^2  +1))dx ⇒ I =Re( ∫_(−∞) ^(+∞)  (e^(ix) /(x^2  +1))dx) let  W(z) =(e^(iz) /(z^2  +1)) ⇒W(z) =(e^(iz) /((z−i)(z+i)))  so the poles of W are i and −i  residus theorem give ∫_(−∞) ^(+∞)  W(z)dz =2iπ Res(W,i)  Res(W,i) =lim_(z→i) (z−i)W(z) =(e^(−1) /(2i)) ⇒ ∫_(−∞) ^(+∞)  W(z)dz =2iπ×(e^(−1) /(2i))  =(π/e) ⇒ ∫_(−∞) ^(+∞)  ((cos(x))/(x^2  +1))dx =(π/e)

$$\:\:{let}\:{I}\:=\int_{−\infty} ^{+\infty} \:\frac{{cosx}}{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx}\:\Rightarrow\:{I}\:={Re}\left(\:\int_{−\infty} ^{+\infty} \:\frac{{e}^{{ix}} }{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx}\right)\:{let} \\ $$$${W}\left({z}\right)\:=\frac{{e}^{{iz}} }{{z}^{\mathrm{2}} \:+\mathrm{1}}\:\Rightarrow{W}\left({z}\right)\:=\frac{{e}^{{iz}} }{\left({z}−{i}\right)\left({z}+{i}\right)}\:\:{so}\:{the}\:{poles}\:{of}\:{W}\:{are}\:{i}\:{and}\:−{i} \\ $$$${residus}\:{theorem}\:{give}\:\int_{−\infty} ^{+\infty} \:{W}\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left({W},{i}\right) \\ $$$${Res}\left({W},{i}\right)\:={lim}_{{z}\rightarrow{i}} \left({z}−{i}\right){W}\left({z}\right)\:=\frac{{e}^{−\mathrm{1}} }{\mathrm{2}{i}}\:\Rightarrow\:\int_{−\infty} ^{+\infty} \:{W}\left({z}\right){dz}\:=\mathrm{2}{i}\pi×\frac{{e}^{−\mathrm{1}} }{\mathrm{2}{i}} \\ $$$$=\frac{\pi}{{e}}\:\Rightarrow\:\int_{−\infty} ^{+\infty} \:\frac{{cos}\left({x}\right)}{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx}\:=\frac{\pi}{{e}} \\ $$

Commented by Fawole last updated on 20/Sep/19

Nice solution

$${Nice}\:{solution} \\ $$

Commented by mathmax by abdo last updated on 20/Sep/19

thanks

$${thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com