Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 193513 by Mastermind last updated on 15/Jun/23

Evaluate I=∫_s ∫x^3 dydz + x^2 ydzdx.  where S is the closed surface consis−  ting of the cylinder x^2 +y^2 =a^2 , 0≤z≤b  and the cylinder  disks z=0 and z=b,  x^2 +y^2 =b, x^2 +y^2 ≤a.      Help!

$$\mathrm{Evaluate}\:\mathrm{I}=\underset{\mathrm{s}} {\int}\int\mathrm{x}^{\mathrm{3}} \mathrm{dydz}\:+\:\mathrm{x}^{\mathrm{2}} \mathrm{ydzdx}. \\ $$$$\mathrm{where}\:\mathrm{S}\:\mathrm{is}\:\mathrm{the}\:\mathrm{closed}\:\mathrm{surface}\:\mathrm{consis}− \\ $$$$\mathrm{ting}\:\mathrm{of}\:\mathrm{the}\:\mathrm{cylinder}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{a}^{\mathrm{2}} ,\:\mathrm{0}\leqslant\mathrm{z}\leqslant\mathrm{b} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{cylinder}\:\:\mathrm{disks}\:\mathrm{z}=\mathrm{0}\:\mathrm{and}\:\mathrm{z}=\mathrm{b}, \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{b},\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \leqslant\mathrm{a}. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$

Answered by witcher3 last updated on 16/Jun/23

(x,y,z)→(rcos(t),rsin(t),z)  dxdydz=rdrdtdz

$$\left(\mathrm{x},\mathrm{y},\mathrm{z}\right)\rightarrow\left(\mathrm{rcos}\left(\mathrm{t}\right),\mathrm{rsin}\left(\mathrm{t}\right),\mathrm{z}\right) \\ $$$$\mathrm{dxdydz}=\mathrm{rdrdtdz} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com