Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 76965 by peter frank last updated on 02/Jan/20

Evaluate  I_(ab) =∫sin axcos bxdx  if a≠b and use it to  ∫_0 ^n sin 3xcos 2xdx=((3−(√3))/5)

$${Evaluate} \\ $$$${I}_{{ab}} =\int\mathrm{sin}\:{ax}\mathrm{cos}\:{bxdx} \\ $$$${if}\:{a}\neq{b}\:{and}\:{use}\:{it}\:{to} \\ $$$$\int_{\mathrm{0}} ^{{n}} \mathrm{sin}\:\mathrm{3}{x}\mathrm{cos}\:\mathrm{2}{xdx}=\frac{\mathrm{3}−\sqrt{\mathrm{3}}}{\mathrm{5}} \\ $$

Answered by mr W last updated on 01/Jan/20

sin (ax+bx)=sin ax cos bx+cos ax sin bx  sin (ax−bx)=sin ax cos bx−cos ax sin bx  ⇒sin ax cos bx=((sin (a+b)x+sin (a−b)x)/2)  I=∫sin ax cos bx dx  =(1/2)∫(sin (a+b)x+sin (a−b)x)dx  =−(1/2)[((cos (a+b)x)/(a+b))+((cos (a−b)x)/(a−b))]+C

$$\mathrm{sin}\:\left({ax}+{bx}\right)=\mathrm{sin}\:{ax}\:\mathrm{cos}\:{bx}+\mathrm{cos}\:{ax}\:\mathrm{sin}\:{bx} \\ $$$$\mathrm{sin}\:\left({ax}−{bx}\right)=\mathrm{sin}\:{ax}\:\mathrm{cos}\:{bx}−\mathrm{cos}\:{ax}\:\mathrm{sin}\:{bx} \\ $$$$\Rightarrow\mathrm{sin}\:{ax}\:\mathrm{cos}\:{bx}=\frac{\mathrm{sin}\:\left({a}+{b}\right){x}+\mathrm{sin}\:\left({a}−{b}\right){x}}{\mathrm{2}} \\ $$$${I}=\int\mathrm{sin}\:{ax}\:\mathrm{cos}\:{bx}\:{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\left(\mathrm{sin}\:\left({a}+{b}\right){x}+\mathrm{sin}\:\left({a}−{b}\right){x}\right){dx} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\mathrm{cos}\:\left({a}+{b}\right){x}}{{a}+{b}}+\frac{\mathrm{cos}\:\left({a}−{b}\right){x}}{{a}−{b}}\right]+{C} \\ $$

Commented by peter frank last updated on 02/Jan/20

thank you

$${thank}\:{you} \\ $$

Commented by peter frank last updated on 02/Jan/20

how about part b

$${how}\:{about}\:{part}\:{b} \\ $$

Commented by mr W last updated on 02/Jan/20

i think you should be able to do  part b by yourself. but i can not,  because i don′t know what is n in  your question ∫_0 ^( n) .

$${i}\:{think}\:{you}\:{should}\:{be}\:{able}\:{to}\:{do} \\ $$$${part}\:{b}\:{by}\:{yourself}.\:{but}\:{i}\:{can}\:{not}, \\ $$$${because}\:{i}\:{don}'{t}\:{know}\:{what}\:{is}\:{n}\:{in} \\ $$$${your}\:{question}\:\int_{\mathrm{0}} ^{\:{n}} . \\ $$

Commented by peter frank last updated on 02/Jan/20

thank you

$${thank}\:{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com