Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 59679 by Forkum Michael Choungong last updated on 13/May/19

Evaluate   ∫_0 ^3 (((x^2 +3x)/x^3 ))

$${Evaluate} \\ $$$$\:\underset{\mathrm{0}} {\overset{\mathrm{3}} {\int}}\left(\frac{{x}^{\mathrm{2}} +\mathrm{3}{x}}{{x}^{\mathrm{3}} }\right) \\ $$$$ \\ $$

Answered by Kunal12588 last updated on 13/May/19

∫_0 ^3 (((x^2 +3x)/x^3 ))dx  =∫_0 ^3 ((x^2 /x^3 )+((3x)/x^3 ))dx  =∫_0 ^3 (1/x) dx + 3∫_0 ^3  (1/x^2 )dx  =[ln(x)]_0 ^3  + 3[(x^(−2+1) /(−2+1))]_0 ^3   =ln(3)−ln(0)−3(3^(−1) −0^(−1) )  so ∫_1 ^3 (((x^2 +3x)/x^3 ))dx is undefined

$$\underset{\mathrm{0}} {\overset{\mathrm{3}} {\int}}\left(\frac{{x}^{\mathrm{2}} +\mathrm{3}{x}}{{x}^{\mathrm{3}} }\right){dx} \\ $$$$=\underset{\mathrm{0}} {\overset{\mathrm{3}} {\int}}\left(\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{3}} }+\frac{\mathrm{3}{x}}{{x}^{\mathrm{3}} }\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{3}} \frac{\mathrm{1}}{{x}}\:{dx}\:+\:\mathrm{3}\int_{\mathrm{0}} ^{\mathrm{3}} \:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }{dx} \\ $$$$=\left[{ln}\left({x}\right)\right]_{\mathrm{0}} ^{\mathrm{3}} \:+\:\mathrm{3}\left[\frac{{x}^{−\mathrm{2}+\mathrm{1}} }{−\mathrm{2}+\mathrm{1}}\right]_{\mathrm{0}} ^{\mathrm{3}} \\ $$$$={ln}\left(\mathrm{3}\right)−{ln}\left(\mathrm{0}\right)−\mathrm{3}\left(\mathrm{3}^{−\mathrm{1}} −\mathrm{0}^{−\mathrm{1}} \right) \\ $$$${so}\:\int_{\mathrm{1}} ^{\mathrm{3}} \left(\frac{{x}^{\mathrm{2}} +\mathrm{3}{x}}{{x}^{\mathrm{3}} }\right){dx}\:{is}\:{undefined} \\ $$

Answered by meme last updated on 13/May/19

∫_0 ^3 ((x+3)/x^2 )=∫_0 ^3 (1/x)+∫_0 ^3 (1/x^2 )=[ln(x)]_0 ^3 −3[(1/x)]_0 ^3                                impossible(ln0)

$$\int_{\mathrm{0}} ^{\mathrm{3}} \frac{{x}+\mathrm{3}}{{x}^{\mathrm{2}} }=\int_{\mathrm{0}} ^{\mathrm{3}} \frac{\mathrm{1}}{{x}}+\int_{\mathrm{0}} ^{\mathrm{3}} \frac{\mathrm{1}}{{x}^{\mathrm{2}} }=\left[{ln}\left({x}\right)\right]_{\mathrm{0}} ^{\mathrm{3}} −\mathrm{3}\left[\frac{\mathrm{1}}{{x}}\right]_{\mathrm{0}} ^{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{impossible}\left({ln}\mathrm{0}\right) \\ $$

Answered by Joel122 last updated on 14/May/19

Let f(x) = ((x^2  + 3x)/x^3 )  f(x) is undefined at x = 0, so it′s an improper integral  I = ∫_0 ^3   ((x^2  + 3x)/x^3 ) dx = lim_(a→0^− )  [∫_a ^3   ((x^2  + 3x)/x^3 ) dx]           [((∫_a ^3   ((x^2  + 3x)/x^3 ) dx = ∫_a ^3   (1/x) + (3/x^2 ) dx = [ln x − (3/x)]_a ^3 )),((                              = ln ((3/a)) + (3/a) − 1)) ]  I = lim_(a→0^− )  [ln ((3/a)) + (3/a) − 1] = ∞                   ∴ The integral is divergent

$$\mathrm{Let}\:{f}\left({x}\right)\:=\:\frac{{x}^{\mathrm{2}} \:+\:\mathrm{3}{x}}{{x}^{\mathrm{3}} } \\ $$$${f}\left({x}\right)\:\mathrm{is}\:\mathrm{undefined}\:\mathrm{at}\:{x}\:=\:\mathrm{0},\:\mathrm{so}\:\mathrm{it}'\mathrm{s}\:\mathrm{an}\:\mathrm{improper}\:\mathrm{integral} \\ $$$${I}\:=\:\underset{\mathrm{0}} {\overset{\mathrm{3}} {\int}}\:\:\frac{{x}^{\mathrm{2}} \:+\:\mathrm{3}{x}}{{x}^{\mathrm{3}} }\:{dx}\:=\:\underset{{a}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}\:\left[\underset{{a}} {\overset{\mathrm{3}} {\int}}\:\:\frac{{x}^{\mathrm{2}} \:+\:\mathrm{3}{x}}{{x}^{\mathrm{3}} }\:{dx}\right] \\ $$$$\:\:\:\:\:\:\:\:\begin{bmatrix}{\underset{{a}} {\overset{\mathrm{3}} {\int}}\:\:\frac{{x}^{\mathrm{2}} \:+\:\mathrm{3}{x}}{{x}^{\mathrm{3}} }\:{dx}\:=\:\underset{{a}} {\overset{\mathrm{3}} {\int}}\:\:\frac{\mathrm{1}}{{x}}\:+\:\frac{\mathrm{3}}{{x}^{\mathrm{2}} }\:{dx}\:=\:\left[\mathrm{ln}\:{x}\:−\:\frac{\mathrm{3}}{{x}}\right]_{{a}} ^{\mathrm{3}} }\\{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{ln}\:\left(\frac{\mathrm{3}}{{a}}\right)\:+\:\frac{\mathrm{3}}{{a}}\:−\:\mathrm{1}}\end{bmatrix} \\ $$$${I}\:=\:\underset{{a}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}\:\left[\mathrm{ln}\:\left(\frac{\mathrm{3}}{{a}}\right)\:+\:\frac{\mathrm{3}}{{a}}\:−\:\mathrm{1}\right]\:=\:\infty\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\therefore\:\mathrm{The}\:\mathrm{integral}\:\mathrm{is}\:\mathrm{divergent} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com