Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 206007 by SANOGO last updated on 04/Apr/24

(E,<,> ):   prouve  <x,y>=(1/4)Σ_(k=o) ^3 i^k ∣∣x + i^k y∣∣^2

$$\left({E},<,>\:\right):\:\:\:{prouve} \\ $$$$<{x},{y}>=\frac{\mathrm{1}}{\mathrm{4}}\underset{{k}={o}} {\overset{\mathrm{3}} {\sum}}{i}^{{k}} \mid\mid{x}\:+\:{i}^{{k}} {y}\mid\mid^{\mathrm{2}} \\ $$

Commented by Berbere last updated on 04/Apr/24

We can generlized it  <x,y>=(1/n)Σ_(k=0) ^n e^((2ikπ)/n) ∣∣x+e^((2ikπ)/n) y∣∣^2

$${We}\:{can}\:{generlized}\:{it} \\ $$$$<{x},{y}>=\frac{\mathrm{1}}{{n}}\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{e}^{\frac{\mathrm{2}{ik}\pi}{{n}}} \mid\mid{x}+{e}^{\frac{\mathrm{2}{ik}\pi}{{n}}} {y}\mid\mid^{\mathrm{2}} \\ $$

Answered by Berbere last updated on 04/Apr/24

∣∣x+i^k y∣∣^2 =<x+i^k y;x+i^k y>  <x,y>=(<y,^− x>)  ∀(x,y)∈E^2 ;∀(a,b)∈C  <ax,by>=ab^− <x,y>;<x+x′;y>=<x,y>+<x′,y>  <x,y+y′>=<x,y>+<x,y′>  <x+i^k y;x+i^k y>  =<x,x>+(−i)^k <x,y>+i^k <y,x>+<y,y>  =∣∣x∣∣^2 +∣∣y∣∣^2 +(−i)^k <x,y>+i^k <y,x>  Σi^k =0;i^k   root of X^4 −1;Σroot =0  (1/4)Σi^k (∣∣x∣∣^2 +∣∣y∣∣^2 +(−i)^k <x,y>+i^k <y,x>)  =(1/4)(∣∣x^2 ∣∣+∣∣y∣∣^2 )Σi^k +(1/4)Σ_(k=0) ^3 i^k (−i)^k <x,y>  +(1/4)Σ_(k=0) ^3 (i)^k (i^k )<y,x>  =<x,y>  Σ(i)^k (−i)^k =Σ1=4;Σ(i)^k (i)^k =Σ_0 ^3 (−1)^k =0  <x,y>.(1/4)Σ_(k=0) ^3 i^k ∣∣x+i^k y∣∣^2

$$\mid\mid{x}+{i}^{{k}} {y}\mid\mid^{\mathrm{2}} =<{x}+{i}^{{k}} {y};{x}+{i}^{{k}} {y}> \\ $$$$<{x},{y}>=\left(<{y}\overset{−} {,}{x}>\right) \\ $$$$\forall\left({x},{y}\right)\in{E}^{\mathrm{2}} ;\forall\left({a},{b}\right)\in\mathbb{C} \\ $$$$<{ax},{by}>={a}\overset{−} {{b}}<{x},{y}>;<{x}+{x}';{y}>=<{x},{y}>+<{x}',{y}> \\ $$$$<{x},{y}+{y}'>=<{x},{y}>+<{x},{y}'> \\ $$$$<{x}+{i}^{{k}} {y};{x}+{i}^{{k}} {y}> \\ $$$$=<{x},{x}>+\left(−{i}\right)^{{k}} <{x},{y}>+{i}^{{k}} <{y},{x}>+<{y},{y}> \\ $$$$=\mid\mid{x}\mid\mid^{\mathrm{2}} +\mid\mid{y}\mid\mid^{\mathrm{2}} +\left(−{i}\right)^{{k}} <{x},{y}>+{i}^{{k}} <{y},{x}> \\ $$$$\Sigma{i}^{{k}} =\mathrm{0};{i}^{{k}} \:\:{root}\:{of}\:{X}^{\mathrm{4}} −\mathrm{1};\Sigma{root}\:=\mathrm{0} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\Sigma{i}^{{k}} \left(\mid\mid{x}\mid\mid^{\mathrm{2}} +\mid\mid{y}\mid\mid^{\mathrm{2}} +\left(−{i}\right)^{{k}} <{x},{y}>+{i}^{{k}} <{y},{x}>\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left(\mid\mid{x}^{\mathrm{2}} \mid\mid+\mid\mid{y}\mid\mid^{\mathrm{2}} \right)\Sigma{i}^{{k}} +\frac{\mathrm{1}}{\mathrm{4}}\underset{{k}=\mathrm{0}} {\overset{\mathrm{3}} {\sum}}{i}^{{k}} \left(−{i}\right)^{{k}} <{x},{y}> \\ $$$$+\frac{\mathrm{1}}{\mathrm{4}}\underset{{k}=\mathrm{0}} {\overset{\mathrm{3}} {\sum}}\left({i}\right)^{{k}} \left({i}^{{k}} \right)<{y},{x}> \\ $$$$=<{x},{y}> \\ $$$$\Sigma\left({i}\right)^{{k}} \left(−{i}\right)^{{k}} =\Sigma\mathrm{1}=\mathrm{4};\Sigma\left({i}\right)^{{k}} \left({i}\right)^{{k}} =\underset{\mathrm{0}} {\overset{\mathrm{3}} {\sum}}\left(−\mathrm{1}\right)^{{k}} =\mathrm{0} \\ $$$$<{x},{y}>.\frac{\mathrm{1}}{\mathrm{4}}\underset{{k}=\mathrm{0}} {\overset{\mathrm{3}} {\sum}}{i}^{{k}} \mid\mid{x}+{i}^{{k}} {y}\mid\mid^{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com