Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 206339 by mnjuly1970 last updated on 12/Apr/24

       E ⊆ Y ⊆ ( X , d )∣_(metric space)       prove  E is open in Y if and  only if         ∃ G (open set ) in X  such that           E = G ∩ Y   .... (mathematical analysis (I))

$$ \\ $$$$\:\:\:\:\:{E}\:\subseteq\:{Y}\:\subseteq\:\left(\:{X}\:,\:{d}\:\right)\mid_{{metric}\:{space}} \\ $$$$\:\:\:\:{prove}\:\:{E}\:{is}\:{open}\:{in}\:{Y}\:{if}\:{and}\:\:{only}\:{if} \\ $$$$\:\:\:\:\:\:\:\exists\:{G}\:\left({open}\:{set}\:\right)\:{in}\:{X}\:\:{such}\:{that} \\ $$$$\:\:\:\:\:\:\:\:\:{E}\:=\:{G}\:\cap\:{Y}\:\:\:....\:\left({mathematical}\:{analysis}\:\left({I}\right)\right) \\ $$

Answered by Berbere last updated on 13/Apr/24

E=G∩Y  G let a∈E;a∈G since G is open in X  ∃ O∈X opene such that a∈O ⊂G   O∩Y is open in Y since Y sub[space of (X,d) induit Topolopgiep  (O∩Y)⊂(G∩Y)=E open in Y   Suppose E is opened in Y  E=∪_(e∈E) {e}    ∀e ∃ O_e  open in Y such That e∈O_e ⊂E  O_e =O_e ′∩Y ,O′_e  open in X  G=∪_e O′_e  opene in (X,d)  ∀e  O′_e  ∩Y =O_e  open in Y  G ∩Y is open in Y ⇒G=∪_(e∈E) O′_e  worcks

$${E}={G}\cap{Y}\:\:{G}\:{let}\:{a}\in{E};{a}\in{G}\:{since}\:{G}\:{is}\:{open}\:{in}\:{X} \\ $$$$\exists\:{O}\in{X}\:{opene}\:{such}\:{that}\:{a}\in{O}\:\subset{G}\: \\ $$$${O}\cap{Y}\:{is}\:{open}\:{in}\:{Y}\:{since}\:{Y}\:{sub}\left[{space}\:{of}\:\left({X},{d}\right)\:{induit}\:{Topolopgiep}\right. \\ $$$$\left({O}\cap{Y}\right)\subset\left({G}\cap{Y}\right)={E}\:{open}\:{in}\:{Y}\: \\ $$$${Suppose}\:{E}\:{is}\:{opened}\:{in}\:{Y} \\ $$$${E}=\underset{{e}\in{E}} {\cup}\left\{{e}\right\}\:\: \\ $$$$\forall{e}\:\exists\:{O}_{{e}} \:{open}\:{in}\:{Y}\:{such}\:{That}\:{e}\in{O}_{{e}} \subset{E} \\ $$$${O}_{{e}} ={O}_{{e}} '\cap{Y}\:,{O}'_{{e}} \:{open}\:{in}\:{X} \\ $$$${G}=\cup_{{e}} {O}'_{{e}} \:{opene}\:{in}\:\left({X},{d}\right) \\ $$$$\forall{e}\:\:{O}'_{{e}} \:\cap{Y}\:={O}_{{e}} \:{open}\:{in}\:{Y} \\ $$$${G}\:\cap{Y}\:{is}\:{open}\:{in}\:{Y}\:\Rightarrow{G}=\underset{{e}\in{E}} {\cup}{O}'_{{e}} \:{worcks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com