Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 209308 by Erico last updated on 06/Jul/24

Donner l′e^� quivalence simple  de I_n =∫^( 1) _( 0) (t^n /(t^n −t+1))dt

$$\mathrm{Donner}\:\mathrm{l}'\acute {\mathrm{e}quivalence}\:\mathrm{simple} \\ $$$$\mathrm{de}\:\mathrm{I}_{\mathrm{n}} =\underset{\:\mathrm{0}} {\int}^{\:\mathrm{1}} \frac{{t}^{{n}} }{{t}^{{n}} −{t}+\mathrm{1}}{dt} \\ $$

Answered by mathzup last updated on 07/Jul/24

t=x^(1/n)  ⇒I_n =∫_0 ^1 (x/(x−x^(1/n) +1))×(1/n)×x^((1/n)−1) dx  =(1/n)∫_0 ^1    (x^(1/n) /(x+1−x^(1/n) ))dx =(1/n) ∫_0 ^1 f_n (x)dx we have  lim_(n→∞) ∫_0 ^1  f_n (x)dx=∫_0 ^1 (dx/(1+x))=ln2 ⇒  I_n ∼((ln2)/n)    (n→+∞)

$${t}={x}^{\frac{\mathrm{1}}{{n}}} \:\Rightarrow{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}}{{x}−{x}^{\frac{\mathrm{1}}{{n}}} +\mathrm{1}}×\frac{\mathrm{1}}{{n}}×{x}^{\frac{\mathrm{1}}{{n}}−\mathrm{1}} {dx} \\ $$$$=\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{x}^{\frac{\mathrm{1}}{{n}}} }{{x}+\mathrm{1}−{x}^{\frac{\mathrm{1}}{{n}}} }{dx}\:=\frac{\mathrm{1}}{{n}}\:\int_{\mathrm{0}} ^{\mathrm{1}} {f}_{{n}} \left({x}\right){dx}\:{we}\:{have} \\ $$$${lim}_{{n}\rightarrow\infty} \int_{\mathrm{0}} ^{\mathrm{1}} \:{f}_{{n}} \left({x}\right){dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\mathrm{1}+{x}}={ln}\mathrm{2}\:\Rightarrow \\ $$$${I}_{{n}} \sim\frac{{ln}\mathrm{2}}{{n}}\:\:\:\:\left({n}\rightarrow+\infty\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com