Question and Answers Forum
All Questions Topic List
DifferentiationQuestion and Answers: Page 63
Question Number 19085 Answers: 0 Comments: 0
$$\mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)=\sqrt{\mathrm{f}_{\mathrm{n}−\mathrm{1}} \left(\mathrm{x}\right)×\left(\mathrm{f}_{\mathrm{n}−\mathrm{1}} \left(\mathrm{x}\right)\right)'} \\ $$$$\mathrm{f}_{\mathrm{1}} \left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{2017}} +\mathrm{x}^{\mathrm{8}} +\mathrm{x}^{\mathrm{4}} \\ $$$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}f}_{\mathrm{n}} \left(\mathrm{x}\right)=? \\ $$
Question Number 18906 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\frac{\mathrm{dy}}{\mathrm{dx}}\:\:\:\mathrm{where}\: \\ $$$$\mathrm{y}=\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{a}+\mathrm{b}\:\mathrm{cosx}}{\mathrm{b}+\mathrm{a}\:\mathrm{cosx}}\:\left(\mathrm{b}>\mathrm{a}\right) \\ $$
Question Number 18905 Answers: 0 Comments: 0
$$\mathrm{prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{differentiation} \\ $$$$\mathrm{of}\frac{\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }−\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }}{\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }+\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }}\:\:\mathrm{with}\:\mathrm{respect} \\ $$$$\mathrm{to}\:\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{4}} }\:\:\mathrm{is}\:\:\frac{\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{4}} }}{\mathrm{x}^{\mathrm{6}} } \\ $$
Question Number 18446 Answers: 0 Comments: 0
Question Number 18469 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{Z}_{\mathrm{x}} \:\mathrm{and}\:\mathrm{Z}_{\mathrm{y}} \:\mathrm{for}\:\mathrm{each}\:\mathrm{of}\:\mathrm{the}\:\mathrm{functions}\:\mathrm{below} \\ $$$$\left(\mathrm{a}\right)\:\:\mathrm{Z}\:=\:\mathrm{8x}^{\mathrm{2}} \mathrm{y}\:+\:\mathrm{14xy}^{\mathrm{2}} \:+\:\mathrm{5y}^{\mathrm{2}} \mathrm{x}^{\mathrm{3}} \\ $$$$\left(\mathrm{b}\right)\:\:\mathrm{Z}\:=\:\mathrm{4x}^{\mathrm{3}} \mathrm{y}^{\mathrm{2}} \:+\:\mathrm{2x}^{\mathrm{2}} \mathrm{y}^{\mathrm{3}} \:−\:\mathrm{7xy}^{\mathrm{5}} \\ $$
Question Number 18470 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{partial}\:\mathrm{derivatives}\:\mathrm{for}\:\mathrm{each}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{Z}\:=\:\mathrm{3x}^{\mathrm{2}} \left(\mathrm{5x}\:+\:\mathrm{7y}\right)^{\mathrm{2}} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{Z}\:=\:\left(\mathrm{w}\:−\:\mathrm{x}\:−\:\mathrm{y}\right)^{\mathrm{2}} \:\left(\mathrm{3w}\:+\:\mathrm{2x}\:−\:\mathrm{4y}\right) \\ $$
Question Number 18283 Answers: 0 Comments: 0
$$\mathrm{Given}:\:\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \\ $$$$\mathrm{Show}\:\mathrm{that},\:\:\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:=\:\frac{\mathrm{xy}}{\mathrm{y}^{\mathrm{2}} \:+\:\mathrm{x}^{\mathrm{2}} } \\ $$
Question Number 17634 Answers: 1 Comments: 0
$$\mathrm{y}\:=\:\mathrm{x}!\:\:,\:\:\:\:\:\mathrm{Find}\:\:\:\mathrm{y}' \\ $$
Question Number 16893 Answers: 0 Comments: 4
$$\mathrm{if}\:\mathrm{y}=\mathrm{u}^{\mathrm{n}} \:\:\:\mathrm{show}\:\mathrm{that}\:\mathrm{d}^{\mathrm{n}} \mathrm{y}/\mathrm{dx}^{\mathrm{n}} =\mathrm{n}! \\ $$
Question Number 16788 Answers: 0 Comments: 1
Question Number 16689 Answers: 1 Comments: 0
$${why}\:{any}\:{infinitely}\:{differentiable}\:{function}\:{is}\:{a}\:{power}\:{series}? \\ $$
Question Number 15797 Answers: 1 Comments: 1
$$\mathrm{If}\:\:\left(\mathrm{a}\:+\:\mathrm{bx}\right)\mathrm{e}^{\mathrm{y}/\mathrm{x}} \:=\:\mathrm{x},\:\:\:\mathrm{where}\:\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}\:\mathrm{are}\:\mathrm{constant},\: \\ $$$$\mathrm{prove}\:\mathrm{that},:\:\:\:\mathrm{x}^{\mathrm{3}} \mathrm{y}''\:=\:\left(\mathrm{xy}'\:−\:\mathrm{y}\right)^{\mathrm{2}} \\ $$
Question Number 15741 Answers: 1 Comments: 0
$${Find}\:{the}\:{minimum}\:{value}\:\:{of} \\ $$$$\:\:\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} +\boldsymbol{{z}}^{\mathrm{2}} ,\:{with}\:{the}\:{condition} \\ $$$$\:{ax}+{by}+{cz}={p}\:. \\ $$
Question Number 15179 Answers: 1 Comments: 0
$$\mathrm{If}\:\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:+\:\mathrm{4}{y}\:=\:\mathrm{0}\: \\ $$$${y}\left(\mathrm{0}\right)\:=\:\mathrm{1}\:\mathrm{and}\:{y}\left(\frac{\pi}{\mathrm{6}}\right)\:=\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:+\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{How}\:\mathrm{to}\:\mathrm{find}\:{y}\left({x}\right)\:? \\ $$
Question Number 14513 Answers: 2 Comments: 0
$$\mathrm{If}\:\:\mathrm{y}^{\mathrm{2}} \left(\mathrm{1}\:+\:\mathrm{x}^{\mathrm{2}} \right)\:=\:\mathrm{1}\:−\:\mathrm{x}^{\mathrm{2}} \\ $$$$\mathrm{Show}\:\mathrm{that},\:\:\:\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{\mathrm{2}} \:=\:\frac{\mathrm{1}\:−\:\mathrm{y}^{\mathrm{4}} }{\mathrm{1}\:−\:\mathrm{x}^{\mathrm{4}} } \\ $$
Question Number 13955 Answers: 0 Comments: 2
$${y}\left({x}\right)=\begin{cases}{\mathrm{4}+\mathrm{6}{x}−\mathrm{3}{x}^{\mathrm{2}} \:\:\:\:\:\:\:;\:\:{x}\:<\:\mathrm{2}}\\{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{14}{x}+\mathrm{20}\:\:;\:\:{x}\:\geqslant\:\mathrm{2}}\end{cases} \\ $$$${Is}\:{the}\:{function}\:{y}\left({x}\right)\: \\ $$$${differentiable}\:{with}\:{respect}\:{to}\:{x} \\ $$$${at}\:{x}=\mathrm{2}\:? \\ $$
Question Number 13871 Answers: 0 Comments: 0
$${why}\:{the}\:{function},{sin}\left({x}\right)\:{is}\:{a}\:{power} \\ $$$${series}?? \\ $$
Question Number 13806 Answers: 0 Comments: 1
$${Prove}\:{that}\:{for}\:−\frac{\pi}{\mathrm{2}}<{x}<\frac{\pi}{\mathrm{2}}\:, \\ $$$$\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{3}} }\mathrm{cos}\:{x}−\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} }\mathrm{cos}\:\mathrm{3}{x}+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{3}} }\mathrm{cos}\:\mathrm{5}{x}−....{to}\:{infinity} \\ $$$$\:\:=\frac{\pi}{\mathrm{8}}\left(\frac{\pi^{\mathrm{2}} }{\mathrm{4}}−{x}^{\mathrm{2}} \right)\:. \\ $$
Question Number 13751 Answers: 1 Comments: 4
$$\frac{{ds}}{{dt}}={v},\frac{{dv}}{{dt}}={a},\frac{{da}}{{dt}}={b},\frac{{db}}{{dt}}={e},\frac{{de}}{{dt}}={f} \\ $$$$\frac{{df}}{{dt}}={g},\frac{{dg}}{{dt}}={h},\frac{{dh}}{{dt}}={i},\frac{{di}}{{dt}}={j},\frac{{dj}}{{dt}}={k},..... \\ $$$${now}\:{if}\:{we}\:{continue}\:{this}\:{process}\:{to} \\ $$$${infinity}..{and}\:{if}\:{v}_{\mathrm{0}} ,{v},{a},{b},{e},{f},{g},{h},{i}, \\ $$$${j},................=\mathrm{1}\:.{then}\:{calculate} \\ $$$${the}\:{formula}\:{of}\:{v}\:{and}\:{s}\:... \\ $$$$ \\ $$
Question Number 13429 Answers: 0 Comments: 2
Question Number 13427 Answers: 0 Comments: 0
Question Number 13226 Answers: 2 Comments: 0
$$\mathrm{if}\:\mathrm{x}^{\mathrm{3}} +\mathrm{y}^{\mathrm{3}} =\mathrm{3axy},\mathrm{find}\:\mathrm{dy}/\mathrm{dx}\:\mathrm{in}\:\mathrm{terms} \\ $$$$\mathrm{of}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}\:\mathrm{and}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{dy}/\mathrm{dx}\: \\ $$$$\mathrm{cannot}\:\mathrm{be}\:\mathrm{equal}\:\mathrm{to}\:-\mathrm{1}\:\mathrm{for}\:\mathrm{finite} \\ $$$$\mathrm{values}\:\mathrm{of}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}\:\mathrm{except}\:\mathrm{x}=\mathrm{y}. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{please}\:\mathrm{help}\: \\ $$
Question Number 13068 Answers: 2 Comments: 0
$$\mathrm{If}\:\:\:\mathrm{y}\:=\:\:\sqrt[{\mathrm{3}}]{\mathrm{x}}\:\:\:\:\:\mathrm{Find}\:\:\frac{\mathrm{dy}}{\mathrm{dx}}\:\:\mathrm{from}\:\mathrm{the}\:\mathrm{first}\:\mathrm{principle} \\ $$
Question Number 12968 Answers: 1 Comments: 0
$$\left(\boldsymbol{\mathrm{x}}+\mathrm{3}\right)^{\mathrm{2}} +\left(\boldsymbol{\mathrm{y}}−\mathrm{5}\right)^{\mathrm{2}} =\mathrm{45}\:\:\:\boldsymbol{\mathrm{A}}\left(\mathrm{0};\mathrm{11}\right) \\ $$$$\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{circle}}\:\:\boldsymbol{\mathrm{to}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{point}}\:\:\boldsymbol{\mathrm{of}} \\ $$$$\boldsymbol{\mathrm{trying}}\:\:\boldsymbol{\mathrm{to}}\:\:\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{angular}}\:\:\boldsymbol{\mathrm{coefficient}}. \\ $$
Question Number 12814 Answers: 1 Comments: 2
Question Number 12708 Answers: 0 Comments: 0
$$\boldsymbol{\mathrm{what}}'\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{values}}\:\:\boldsymbol{\alpha}. \\ $$$$\boldsymbol{\mathrm{y}}=\mathrm{2}\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} −\boldsymbol{\alpha\mathrm{e}}^{−\boldsymbol{\mathrm{x}}} +\left(\mathrm{2}\boldsymbol{\alpha}+\mathrm{1}\right)\boldsymbol{\mathrm{x}}−\mathrm{3} \\ $$$$\boldsymbol{\mathrm{will}}\:\:\boldsymbol{\mathrm{feature}}\:\:\boldsymbol{\mathrm{all}}\:\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{outlets}} \\ $$$$\boldsymbol{\mathrm{growing}}. \\ $$
Pg 58 Pg 59 Pg 60 Pg 61 Pg 62 Pg 63 Pg 64 Pg 65 Pg 66 Pg 67
Terms of Service
Privacy Policy
Contact: info@tinkutara.com