Question and Answers Forum

All Questions   Topic List

DifferentiationQuestion and Answers: Page 11

Question Number 166294    Answers: 0   Comments: 5

f(x)=∫_1 ^x (dt/( (√(t^3 +2t^2 +3)))) (f^(−1) (0))′=?

$$\:\mathrm{f}\left(\mathrm{x}\right)=\int_{\mathrm{1}} ^{{x}} \:\frac{{dt}}{\:\sqrt{{t}^{\mathrm{3}} +\mathrm{2}{t}^{\mathrm{2}} +\mathrm{3}}} \\ $$$$\:\:\:\left({f}^{−\mathrm{1}} \left(\mathrm{0}\right)\right)'=? \\ $$

Question Number 166254    Answers: 1   Comments: 0

Θ=Σ_(n=1) ^∞ (( H_( n) )/(n. (n+1 ))) =^? (π^( 2) /6) −−−−+

$$ \\ $$$$\:\:\:\:\Theta=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:{H}_{\:{n}} }{{n}.\:\left({n}+\mathrm{1}\:\right)}\:\:\overset{?} {=}\:\frac{\pi^{\:\mathrm{2}} }{\mathrm{6}} \\ $$$$\:\:\:\:\:−−−−+ \\ $$

Question Number 166257    Answers: 1   Comments: 2

⌊x⌋⌊2x⌋⌊3x⌋= 6 x=?^

$$ \\ $$$$\:\:\:\lfloor{x}\rfloor\lfloor\mathrm{2}{x}\rfloor\lfloor\mathrm{3}{x}\rfloor=\:\mathrm{6} \\ $$$$\:\:\:\:\:\:\:{x}=\overset{} {?}\: \\ $$

Question Number 166246    Answers: 1   Comments: 0

Question Number 166082    Answers: 1   Comments: 0

prove Ω = ∫_0 ^( 1) (( (1−x )^( 2) .ln^( 3) (1−x ))/x) dx = ((51)/8) −(π^( 4) /(15)) ■ m.n

$$ \\ $$$$\:\:\:\:\:\:\:{prove} \\ $$$$\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\left(\mathrm{1}−{x}\:\right)^{\:\mathrm{2}} .{ln}^{\:\mathrm{3}} \left(\mathrm{1}−{x}\:\right)}{{x}}\:{dx}\:=\:\frac{\mathrm{51}}{\mathrm{8}}\:−\frac{\pi^{\:\mathrm{4}} }{\mathrm{15}}\:\:\:\:\:\:\:\:\:\:\:\:\:\blacksquare\:{m}.{n} \\ $$$$\:\:\:\:\:\:\: \\ $$$$ \\ $$

Question Number 165849    Answers: 0   Comments: 1

solve the differential equation (dy/dx)+(y/(x−1))=(1/(x+1))

$${solve}\:{the}\:{differential}\:{equation} \\ $$$$\frac{{dy}}{{dx}}+\frac{{y}}{{x}−\mathrm{1}}=\frac{\mathrm{1}}{{x}+\mathrm{1}} \\ $$

Question Number 165746    Answers: 1   Comments: 0

compute the extreme points of: f=e^x sin(x+y)

$${compute}\:{the}\:{extreme}\:{points}\:{of}:\: \\ $$$${f}={e}^{{x}} {sin}\left({x}+{y}\right) \\ $$

Question Number 165687    Answers: 2   Comments: 0

If f(x)= ((x^( 2) − 2x −8)/(x^( 2) −7x +12)) then ,find : f^( −1) (x)=?

$$ \\ $$$$\:\:\mathrm{I}{f}\:\:\:\:{f}\left({x}\right)=\:\frac{{x}^{\:\mathrm{2}} −\:\mathrm{2}{x}\:−\mathrm{8}}{{x}^{\:\mathrm{2}} −\mathrm{7}{x}\:+\mathrm{12}} \\ $$$$\:\:\:{then}\:,{find}\::\:\:\:\:\:\:\:\:\:\:\:{f}^{\:−\mathrm{1}} \left({x}\right)=? \\ $$$$ \\ $$

Question Number 165641    Answers: 2   Comments: 0

Given that y = (1/x) (a) Show that y^((n)) = (((−1)^n n!)/x^(n+1) ) (b) Find an expression for y^((n−1)) + y^((n))

$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Given}\:\mathrm{that}\:\:{y}\:=\:\frac{\mathrm{1}}{{x}}\: \\ $$$$\left({a}\right)\:\mathrm{Show}\:\mathrm{that}\:\:{y}^{\left({n}\right)} \:=\:\frac{\left(−\mathrm{1}\right)^{{n}} \:{n}!}{{x}^{{n}+\mathrm{1}} } \\ $$$$\left({b}\right)\:\mathrm{Find}\:\mathrm{an}\:\mathrm{expression}\:\mathrm{for}\:{y}^{\left({n}−\mathrm{1}\right)} +\:{y}^{\left({n}\right)} \\ $$$$ \\ $$

Question Number 165599    Answers: 1   Comments: 0

Question Number 165597    Answers: 0   Comments: 0

prove that Σ_(n=1) ^∞ (( ψ^( (1)) (n))/n^( 2) ) =(7/4) ζ (4) ■ m.n

$$ \\ $$$$\:\:\:\:{prove}\:{that} \\ $$$$\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\psi^{\:\left(\mathrm{1}\right)} \left({n}\right)}{{n}^{\:\mathrm{2}} }\:=\frac{\mathrm{7}}{\mathrm{4}}\:\zeta\:\left(\mathrm{4}\right)\:\:\:\blacksquare\:{m}.{n} \\ $$$$ \\ $$

Question Number 165581    Answers: 2   Comments: 0

ϕ(t)=∫_0 ^( (π/2)) ( sin(x)+t cos(x))^( 2) dx find the value of the extermum of ϕ (t).

$$ \\ $$$$\varphi\left({t}\right)=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \left(\:{sin}\left({x}\right)+{t}\:{cos}\left({x}\right)\right)^{\:\mathrm{2}} {dx} \\ $$$${find}\:\:{the}\:\:{value}\:{of}\:{the}\:{extermum} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{of}\:\:\:\varphi\:\left({t}\right). \\ $$

Question Number 165471    Answers: 0   Comments: 1

{ ((h(3x)=(((2−x)/(x+1))−f(x^3 ))^2 )),((f(1)=f ′(1)=2)) :} h ′(3)=?

$$\:\begin{cases}{{h}\left(\mathrm{3}{x}\right)=\left(\frac{\mathrm{2}−{x}}{{x}+\mathrm{1}}−{f}\left({x}^{\mathrm{3}} \right)\right)^{\mathrm{2}} }\\{{f}\left(\mathrm{1}\right)={f}\:'\left(\mathrm{1}\right)=\mathrm{2}}\end{cases} \\ $$$$\:{h}\:'\left(\mathrm{3}\right)=? \\ $$

Question Number 165441    Answers: 1   Comments: 0

Question Number 165328    Answers: 3   Comments: 0

prove that Nice Integral 𝛗=∫_0 ^( 1) (( tan^( −1) (x^( (3/2)) ))/x^( 2) ) dx =((π + (√3) ln(7 +4(√3) ))/4) ■ m.n −−−−−−−−−

$$ \\ $$$$\:\:\:\:\:{prove}\:{that} \\ $$$$\:\: \\ $$$$\:\:\:\:\:\:\:\mathscr{N}{ice}\:\:\:\mathscr{I}{ntegral} \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{tan}^{\:−\mathrm{1}} \:\left({x}^{\:\frac{\mathrm{3}}{\mathrm{2}}} \right)}{{x}^{\:\mathrm{2}} }\:{dx}\:\:=\frac{\pi\:+\:\sqrt{\mathrm{3}}\:{ln}\left(\mathrm{7}\:+\mathrm{4}\sqrt{\mathrm{3}}\:\right)}{\mathrm{4}}\:\:\:\:\:\:\:\:\:\:\:\:\:\blacksquare\:\:{m}.{n} \\ $$$$\:\:\:\:\:\:−−−−−−−−−\:\:\: \\ $$

Question Number 165194    Answers: 2   Comments: 0

∫_0 ^( 2π) ln ( 1+ cos (x)).cos (nx )dx=?

$$ \\ $$$$\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} {ln}\:\left(\:\mathrm{1}+\:{cos}\:\left({x}\right)\right).{cos}\:\left({nx}\:\right){dx}=? \\ $$

Question Number 165168    Answers: 1   Comments: 0

Question Number 165152    Answers: 1   Comments: 0

prove Ω=∫_0 ^( 1) (( x − x^( 2) )/((1+x )ln(x))) dx = ln((4/π) ) −−−−−

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{prove} \\ $$$$\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{x}\:−\:{x}^{\:\mathrm{2}} }{\left(\mathrm{1}+{x}\:\right){ln}\left({x}\right)}\:{dx}\:=\:{ln}\left(\frac{\mathrm{4}}{\pi}\:\right) \\ $$$$\:\:\:−−−−− \\ $$

Question Number 165018    Answers: 0   Comments: 0

y = Γ(m+n) Find (dy/dn)

$${y}\:=\:\Gamma\left({m}+{n}\right)\: \\ $$$${Find}\:\frac{{dy}}{{dn}} \\ $$

Question Number 164747    Answers: 1   Comments: 0

faind (dy/dx) sin^(−1) (xy)=csc^(−1) (x−y)

$${faind}\:\:\frac{{dy}}{{dx}} \\ $$$${sin}^{−\mathrm{1}} \left({xy}\right)={csc}^{−\mathrm{1}} \left({x}−{y}\right) \\ $$

Question Number 164716    Answers: 1   Comments: 0

find minimum value of f(x)=4sin 2x−5sin x−5cos x+6

$$\:\:\:{find}\:{minimum}\:{value}\:{of}\: \\ $$$$\:{f}\left({x}\right)=\mathrm{4sin}\:\mathrm{2}{x}−\mathrm{5sin}\:{x}−\mathrm{5cos}\:{x}+\mathrm{6} \\ $$

Question Number 164671    Answers: 1   Comments: 1

solve cos^( 3) (x) + sin^( 2) (x) = (7/8) adopted from youtube ...

$$ \\ $$$$\:\:\:\:\:\:\:\:{solve}\: \\ $$$$\:\:\:\:\:\:{cos}^{\:\mathrm{3}} \left({x}\right)\:+\:{sin}^{\:\mathrm{2}} \left({x}\right)\:=\:\frac{\mathrm{7}}{\mathrm{8}}\: \\ $$$$\:\:\:\:\:\:\:\:\:{adopted}\:{from}\:{youtube}\:... \\ $$$$ \\ $$

Question Number 164653    Answers: 2   Comments: 0

solve 𝛗 = ∫_0 ^( 1) ((ln^( 2) ( x ). tanh^( −1) ( x ))/x)dx =? Ω= ∫_0 ^( 1) (( (tanh^(−1) (x))^( 2) )/(1+x)) = ? −−−−

$$ \\ $$$$\:\:\:\:\:\:\:\:{solve} \\ $$$$\:\:\boldsymbol{\phi}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{ln}^{\:\mathrm{2}} \left(\:{x}\:\right).\:{tanh}^{\:−\mathrm{1}} \left(\:{x}\:\:\right)}{{x}}{dx}\:=? \\ $$$$\:\:\:\Omega=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\left({tanh}^{−\mathrm{1}} \left({x}\right)\right)^{\:\mathrm{2}} }{\mathrm{1}+{x}}\:=\:? \\ $$$$\:\:\:\:\:\:−−−− \\ $$

Question Number 164547    Answers: 1   Comments: 0

prove Ω= ∫_0 ^( ∞) (( (√x))/(( 1+x +x^( 2) )^( 3) )) dx =^? ((π(√3))/(36)) −−m.n−−

$$ \\ $$$$\:\:\:\:\:\:\:\:{prove} \\ $$$$\: \\ $$$$\:\:\Omega=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:\sqrt{{x}}}{\left(\:\mathrm{1}+{x}\:+{x}^{\:\mathrm{2}} \right)^{\:\mathrm{3}} \:}\:{dx}\:\overset{?} {=}\:\frac{\pi\sqrt{\mathrm{3}}}{\mathrm{36}}\: \\ $$$$\:\:\:\:\:\:−−{m}.{n}−−\: \\ $$$$ \\ $$

Question Number 164462    Answers: 2   Comments: 2

Find x, such that f(x) is minimum. f(x)={((√(c^2 −x^2 ))/(c−x))−(c−x)}^2

$${Find}\:{x},\:{such}\:{that}\:{f}\left({x}\right)\:{is}\:{minimum}. \\ $$$${f}\left({x}\right)=\left\{\frac{\sqrt{{c}^{\mathrm{2}} −{x}^{\mathrm{2}} }}{{c}−{x}}−\left({c}−{x}\right)\right\}^{\mathrm{2}} \\ $$

Question Number 164366    Answers: 1   Comments: 1

(d/dx) (e^(tan(x)) ) {Z.A}

$$\frac{\boldsymbol{{d}}}{\boldsymbol{{dx}}}\:\left(\boldsymbol{{e}}^{\boldsymbol{{tan}}\left(\boldsymbol{{x}}\right)} \right) \\ $$$$\left\{\boldsymbol{{Z}}.\boldsymbol{\mathrm{A}}\right\} \\ $$

  Pg 6      Pg 7      Pg 8      Pg 9      Pg 10      Pg 11      Pg 12      Pg 13      Pg 14      Pg 15   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com