Question and Answers Forum

All Questions   Topic List

DifferentiationQuestion and Answers: Page 11

Question Number 163510    Answers: 0   Comments: 1

If 𝛗=∫_0 ^( (Ο€/2)) (( 1)/( (√(sin^( 5) (x).cos(x))) +(√(cos^( 5) (x).sin(x)))))dx = find the value of : Ξ“^( 2) ((3/4) ). 𝛗

$$ \\ $$$$\:\:\:\:\:\:\mathrm{I}{f} \\ $$$$\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{\:\mathrm{1}}{\:\sqrt{{sin}^{\:\mathrm{5}} \left({x}\right).{cos}\left({x}\right)}\:+\sqrt{{cos}^{\:\mathrm{5}} \left({x}\right).{sin}\left({x}\right)}}{dx}\:= \\ $$$$\:\:\:{find}\:{the}\:{value}\:{of}\:\::\:\Gamma^{\:\mathrm{2}} \left(\frac{\mathrm{3}}{\mathrm{4}}\:\right).\:\boldsymbol{\phi} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$

Question Number 163487    Answers: 1   Comments: 0

Ξ©= ∫_0 ^( 1) (( sin^( 2) ( ln(x )). ln (x))/( (√x))) dx=? βˆ’βˆ’βˆ’βˆ’βˆ’

$$ \\ $$$$\:\Omega=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{sin}^{\:\mathrm{2}} \left(\:\mathrm{ln}\left({x}\:\right)\right).\:\mathrm{ln}\:\left({x}\right)}{\:\sqrt{{x}}}\:{dx}=? \\ $$$$\:\:\:\:βˆ’βˆ’βˆ’βˆ’βˆ’ \\ $$

Question Number 163400    Answers: 2   Comments: 0

prove Ξ©= ∫_0 ^( ∞) cot^( βˆ’1) (1+x^( 2) )=((√((1/( (√2)))βˆ’(1/2))) ) Ο€

$$ \\ $$$$\:\:\:\:\:{prove}\: \\ $$$$\:\:\:\:\:\Omega=\:\int_{\mathrm{0}} ^{\:\infty} {cot}^{\:βˆ’\mathrm{1}} \left(\mathrm{1}+{x}^{\:\mathrm{2}} \right)=\left(\sqrt{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}βˆ’\frac{\mathrm{1}}{\mathrm{2}}}\:\right)\:\:\pi \\ $$$$ \\ $$

Question Number 163367    Answers: 2   Comments: 0

Question Number 163271    Answers: 0   Comments: 0

put : gcd( a , b )= (a, b ) if ( a ,b )= (a ,c )= (b ,c )=1 prove that : (abc , ab +ac +bc )=1

$$ \\ $$$$\:\:\:\:\:\:{put}\::\:\:{gcd}\left(\:{a}\:,\:{b}\:\right)=\:\left({a},\:{b}\:\right) \\ $$$$\:\:\:\:\:\:\:{if}\:\:\:\left(\:{a}\:,{b}\:\right)=\:\left({a}\:,{c}\:\right)=\:\left({b}\:,{c}\:\right)=\mathrm{1} \\ $$$${prove}\:{that}\::\:\:\left({abc}\:,\:{ab}\:+{ac}\:+{bc}\:\right)=\mathrm{1} \\ $$$$ \\ $$

Question Number 163257    Answers: 0   Comments: 0

Re ( ∫_0 ^( 1) sin^( βˆ’1) ((( 1)/(1βˆ’ x^( 2) )) )dx )=?

$$ \\ $$$$\:\:\:\:\:\mathscr{R}{e}\:\left(\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {sin}^{\:βˆ’\mathrm{1}} \left(\frac{\:\mathrm{1}}{\mathrm{1}βˆ’\:{x}^{\:\mathrm{2}} }\:\right){dx}\:\right)=? \\ $$$$ \\ $$

Question Number 163191    Answers: 0   Comments: 1

Question Number 163134    Answers: 1   Comments: 0

prove or disprove ∫_(2Ο€) ^( 4Ο€) (( sin(x))/x) dx >0 because ∫_(2Ο€) ^( 3Ο€) (( sin(x ))/x) dx > ∫_(3Ο€) ^( 4Ο€) ((∣sin(x)∣)/x) dx

$$ \\ $$$$\:\:\:\:{prove}\:\:{or}\:{disprove} \\ $$$$ \\ $$$$\:\:\:\:\int_{\mathrm{2}\pi} ^{\:\mathrm{4}\pi} \frac{\:{sin}\left({x}\right)}{{x}}\:{dx}\:>\mathrm{0} \\ $$$$\:\:\:\:\:\:\:{because} \\ $$$$\:\int_{\mathrm{2}\pi} ^{\:\mathrm{3}\pi} \frac{\:{sin}\left({x}\:\right)}{{x}}\:{dx}\:>\:\int_{\mathrm{3}\pi} ^{\:\mathrm{4}\pi} \frac{\mid{sin}\left({x}\right)\mid}{{x}}\:{dx} \\ $$$$ \\ $$

Question Number 163080    Answers: 1   Comments: 0

F(x)= (((x^2 βˆ’4x)^2 ))^(1/3) {: ((local maximum)),((absolut maximum)) } =?

$$\:\:\:\:\:\:\:{F}\left({x}\right)=\:\sqrt[{\mathrm{3}}]{\left({x}^{\mathrm{2}} βˆ’\mathrm{4}{x}\right)^{\mathrm{2}} }\: \\ $$$$\:\:\left.\begin{matrix}{{local}\:{maximum}}\\{{absolut}\:{maximum}}\end{matrix}\right\}\:=? \\ $$

Question Number 163045    Answers: 1   Comments: 0

prove that Ξ£_(n=1) ^∞ (( ( 2n+1 )!!)/((2n )!!)) (1/(2^( n) (2n +1)^( 2) )) =((Ο€(√2))/4)βˆ’1

$$ \\ $$$$\:\:\:\:\:{prove}\:{that} \\ $$$$ \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\left(\:\mathrm{2}{n}+\mathrm{1}\:\right)!!}{\left(\mathrm{2}{n}\:\right)!!}\:\frac{\mathrm{1}}{\mathrm{2}^{\:{n}} \left(\mathrm{2}{n}\:+\mathrm{1}\right)^{\:\mathrm{2}} }\:=\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{4}}βˆ’\mathrm{1} \\ $$

Question Number 163033    Answers: 1   Comments: 0

Ξ©= ∫_0 ^( ∞) (( x βˆ’ sin (x ))/x^( 3) )dx βˆ’βˆ’βˆ’ solutionβˆ’βˆ’βˆ’ Ξ©=^(I.B.P) [ ((βˆ’1)/(2 x^( 2) )) (xβˆ’sin(x))]_0 ^∞ +(1/2) ∫_0 ^( ∞) ((1βˆ’cos (x))/x^( 2) )dx = (1/2) ∫_0 ^( ∞) (( 2sin^( 2) ((x/2)))/x^( 2) )dx=∫_0 ^( ∞) ((sin^( 2) ((x/2)))/x^( 2) )dx =^((x/2) = Ξ±) (1/2)∫_0 ^( ∞) ((sin^( 2) ( Ξ±))/Ξ±^( 2) ) dΞ± = (1/2) [((βˆ’1)/Ξ±) sin^( 2) (Ξ±)]_0 ^∞ +(1/2)∫_0 ^( ∞) ((sin(2Ξ±))/Ξ±)dΞ± =^(2Ξ±=Ο•) (1/2) ∫_0 ^( ∞) (( sin(Ο• ))/Ο•) dΟ• =(Ο€/4) βˆ’βˆ’ Ξ©= (Ο€/4) βˆ’βˆ’βˆ’

$$ \\ $$$$\:\:\:\:\Omega=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{x}\:βˆ’\:{sin}\:\left({x}\:\right)}{{x}^{\:\mathrm{3}} }{dx} \\ $$$$βˆ’βˆ’βˆ’\:{solution}βˆ’βˆ’βˆ’ \\ $$$$\:\:\:\:\:\Omega\overset{\mathscr{I}.\mathscr{B}.\mathscr{P}} {=}\:\left[\:\frac{βˆ’\mathrm{1}}{\mathrm{2}\:{x}^{\:\mathrm{2}} }\:\left({x}βˆ’{sin}\left({x}\right)\right)\right]_{\mathrm{0}} ^{\infty} +\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{1}βˆ’{cos}\:\left({x}\right)}{{x}^{\:\mathrm{2}} }{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:\:\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:\mathrm{2}{sin}^{\:\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}{{x}^{\:\mathrm{2}} }{dx}=\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}^{\:\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}{{x}^{\:\mathrm{2}} }{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\overset{\frac{{x}}{\mathrm{2}}\:=\:\alpha} {=}\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}^{\:\mathrm{2}} \left(\:\alpha\right)}{\alpha^{\:\mathrm{2}} }\:{d}\alpha\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\left[\frac{βˆ’\mathrm{1}}{\alpha}\:{sin}^{\:\mathrm{2}} \left(\alpha\right)\right]_{\mathrm{0}} ^{\infty} +\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left(\mathrm{2}\alpha\right)}{\alpha}{d}\alpha \\ $$$$\:\:\:\:\:\:\:\:\overset{\mathrm{2}\alpha=\varphi} {=}\:\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{sin}\left(\varphi\:\right)}{\varphi}\:{d}\varphi\:=\frac{\pi}{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:βˆ’βˆ’\:\:\:\:\:\Omega=\:\frac{\pi}{\mathrm{4}}\:\:βˆ’βˆ’βˆ’ \\ $$$$ \\ $$$$ \\ $$

Question Number 163002    Answers: 0   Comments: 0

prove that i:Ξ£_(n=0) ^∞ (((βˆ’1 )^( n) )/((n +(1/2))cosh(n+(1/2))Ο€)) =(Ο€/4) ii: ∫_0 ^( 1) (( sin( Ο€ x ))/(x^( x) ( 1βˆ’x )^( 1βˆ’x) )) (dx/(1+x)) =(Ο€/4) βˆ’βˆ’βˆ’

$$ \\ $$$$\:\:\:{prove}\:{that} \\ $$$$ \\ $$$$\:{i}:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\left(βˆ’\mathrm{1}\:\right)^{\:{n}} }{\left({n}\:+\frac{\mathrm{1}}{\mathrm{2}}\right){cosh}\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)\pi}\:=\frac{\pi}{\mathrm{4}} \\ $$$$\:\:{ii}:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{sin}\left(\:\pi\:{x}\:\right)}{{x}^{\:{x}} \left(\:\mathrm{1}βˆ’{x}\:\right)^{\:\mathrm{1}βˆ’{x}} }\:\frac{{dx}}{\mathrm{1}+{x}}\:=\frac{\pi}{\mathrm{4}} \\ $$$$\:\:\:\:\:\:βˆ’βˆ’βˆ’ \\ $$

Question Number 162939    Answers: 0   Comments: 0

lim_( xβ†’ 3) ( a ⌊x βŒ‹ + ⌊ βˆ’xβŒ‹).tan(((Ο€x)/2) )=βˆ’βˆž a ∈ ?

$$ \\ $$$$\:\:{lim}_{\:{x}\rightarrow\:\mathrm{3}} \:\left(\:{a}\:\lfloor{x}\:\rfloor\:+\:\lfloor\:βˆ’{x}\rfloor\right).{tan}\left(\frac{\pi{x}}{\mathrm{2}}\:\right)=βˆ’\infty \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{a}\:\in\:? \\ $$$$ \\ $$

Question Number 162924    Answers: 2   Comments: 0

𝛗 =∫_0 ^( ∞) (( e^( βˆ’x^( 2) ) .ln( x ))/( (√x))) dx=Ξ» Ξ“((1/4)) Ξ»=? β– 

$$\: \\ $$$$\:\boldsymbol{\phi}\:=\int_{\mathrm{0}} ^{\:\infty} \frac{\:{e}^{\:βˆ’{x}^{\:\mathrm{2}} } .\mathrm{ln}\left(\:{x}\:\right)}{\:\sqrt{{x}}}\:{dx}=\lambda\:\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\lambda=?\:\:\:\:\:\:\:\:\:\:\:\:\:\blacksquare \\ $$$$ \\ $$

Question Number 162804    Answers: 2   Comments: 0

Ω = ∫ sin^( 2) (x).cos^( 4) (x ) dx

$$ \\ $$$$ \\ $$$$\:\:\:\Omega\:=\:\int\:{sin}^{\:\mathrm{2}} \left({x}\right).{cos}^{\:\mathrm{4}} \left({x}\:\right)\:{dx} \\ $$$$ \\ $$

Question Number 162701    Answers: 1   Comments: 0

Question Number 162675    Answers: 1   Comments: 0

y = (√x) Find (dy/dx) by first principle.

$${y}\:=\:\sqrt{{x}} \\ $$$${Find}\:\:\:\frac{{dy}}{{dx}}\:\:{by}\:{first}\:{principle}. \\ $$

Question Number 162516    Answers: 0   Comments: 1

differenciate using implicit function 2x+4y+sin xy=3

$${differenciate}\:{using}\:{implicit}\:{function}\:\mathrm{2}{x}+\mathrm{4}{y}+\mathrm{sin}\:{xy}=\mathrm{3} \\ $$

Question Number 162424    Answers: 1   Comments: 0

calculate Ξ© = Ξ£_(n=1) ^∞ (( (βˆ’1)^( n) n)/(3^( n) (2n βˆ’1 ))) =? βˆ’ Inspired from Sir Ghaderiβ€²s postβˆ’

$$ \\ $$$$\:\:\:\:\:{calculate}\: \\ $$$$ \\ $$$$\:\:\:\:\:\Omega\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\:\left(βˆ’\mathrm{1}\right)^{\:{n}} {n}}{\mathrm{3}^{\:{n}} \:\left(\mathrm{2}{n}\:βˆ’\mathrm{1}\:\right)}\:=?\:\:\:\: \\ $$$$\:\:\:\:βˆ’\:\mathrm{I}{nspired}\:{from}\:{Sir}\:\mathrm{G}{haderi}'{s}\:{post}βˆ’ \\ $$

Question Number 162395    Answers: 0   Comments: 1

Question Number 162377    Answers: 1   Comments: 2

prove that Οˆβ€²β€² ((1/4) )= βˆ’2Ο€^( 3) βˆ’ 56 ΞΆ (3 )

$$ \\ $$$$\:\:{prove}\:\:{that} \\ $$$$ \\ $$$$\:\:\:\:\:\:\psi''\:\left(\frac{\mathrm{1}}{\mathrm{4}}\:\right)=\:βˆ’\mathrm{2}\pi^{\:\mathrm{3}} βˆ’\:\mathrm{56}\:\zeta\:\left(\mathrm{3}\:\right) \\ $$$$ \\ $$

Question Number 162371    Answers: 2   Comments: 0

If x ∈R the maximum value of ((3x^2 +9x+17)/(3x^2 +9x+7)) is ...

$$\:\:{If}\:{x}\:\in\mathbb{R}\:{the}\:{maximum}\:{value}\: \\ $$$$\:{of}\:\frac{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{9}{x}+\mathrm{17}}{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{9}{x}+\mathrm{7}}\:{is}\:... \\ $$

Question Number 162336    Answers: 1   Comments: 0

lim_( nβ†’βˆž) ((1/(1+n^( 3) )) +(( 4)/(8 +n^( 3) )) + (9/(27 +n^( 3) )) +...+(n^( 2) /(2n^( 3) )) )=?

$$ \\ $$$${lim}_{\:{n}\rightarrow\infty} \:\left(\frac{\mathrm{1}}{\mathrm{1}+{n}^{\:\mathrm{3}} }\:+\frac{\:\mathrm{4}}{\mathrm{8}\:+{n}^{\:\mathrm{3}} }\:+\:\frac{\mathrm{9}}{\mathrm{27}\:+{n}^{\:\mathrm{3}} }\:+...+\frac{{n}^{\:\mathrm{2}} }{\mathrm{2}{n}^{\:\mathrm{3}} }\:\right)=? \\ $$$$ \\ $$

Question Number 162168    Answers: 0   Comments: 0

Solve the integroβˆ’differential equation: i(t) + 4(di/dt) + ∫i(t)dt = 2 cos (3t+ 60Β°) where i(t) is a sinulsodial current.

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{integro}βˆ’\mathrm{differential} \\ $$$$\mathrm{equation}: \\ $$$$\:{i}\left({t}\right)\:+\:\mathrm{4}\frac{{di}}{{dt}}\:+\:\int{i}\left({t}\right){dt}\:=\:\mathrm{2}\:\mathrm{cos}\:\left(\mathrm{3}{t}+\:\mathrm{60}Β°\right) \\ $$$$\mathrm{where}\:{i}\left({t}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{sinulsodial}\:\mathrm{current}. \\ $$

Question Number 162025    Answers: 0   Comments: 0

write the taylor expansion of : f(x)= x^( 2) . cos(x) at x=1 then f^( (5 )) (x) at x=1 ?

$$\:\:\:\: \\ $$$$\:\:\:{write}\:\:{the}\:{taylor}\:{expansion}\:{of}\:: \\ $$$$\:\:\:\:\:\:{f}\left({x}\right)=\:{x}^{\:\mathrm{2}} .\:{cos}\left({x}\right)\:\:\:\:{at}\:\:{x}=\mathrm{1} \\ $$$$\:\:\:\:{then}\:\:\:\:\:\:\:\:{f}^{\:\left(\mathrm{5}\:\right)} \left({x}\right)\:\:{at}\:\:{x}=\mathrm{1}\:\:? \\ $$$$ \\ $$

Question Number 162026    Answers: 2   Comments: 0

prove that.... ( 1+ (1/n) )^( n) < e < (1+(1/n) )^( n+1)

$$ \\ $$$$\:\:\:\:{prove}\:{that}.... \\ $$$$\: \\ $$$$\:\:\:\:\:\left(\:\mathrm{1}+\:\frac{\mathrm{1}}{{n}}\:\right)^{\:{n}} \:<\:{e}\:<\:\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\:\right)^{\:{n}+\mathrm{1}} \\ $$$$ \\ $$$$ \\ $$

  Pg 6      Pg 7      Pg 8      Pg 9      Pg 10      Pg 11      Pg 12      Pg 13      Pg 14      Pg 15   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com