Question and Answers Forum

All Questions   Topic List

DifferentiationQuestion and Answers: Page 11

Question Number 164339    Answers: 1   Comments: 0

In AB^Δ C : cos^( 2) (A )+ cos^( 2) (B )+ cos^( 2) ( C )=1 . Prove that AB^Δ C is right angled. −−−−−−−−

$$ \\ $$$$\:\:\:\:{In}\:\:{A}\overset{\Delta} {{B}C}\:\:\::\:\:\:{cos}^{\:\mathrm{2}} \left({A}\:\right)+\:{cos}^{\:\mathrm{2}} \left({B}\:\right)+\:{cos}^{\:\mathrm{2}} \left(\:{C}\:\right)=\mathrm{1}\:\:. \\ $$$$\:\:\:\:\:\:\:\:{Prove}\:{that}\:\:{A}\overset{\Delta} {{B}C}\:\:\:{is}\:\:\:{right}\:{angled}. \\ $$$$\:\:\:\:\:\:−−−−−−−− \\ $$$$\:\:\:\:\:\: \\ $$

Question Number 164103    Answers: 1   Comments: 0

prove that Ω=∫_0 ^( 1) ln(((1+x)/(1−x)) ).(dx/(x (√( 1−x^( 2) )))) = (π^( 2) /2) −− m.n−−

$$ \\ $$$$\:\:\:{prove}\:{that} \\ $$$$\: \\ $$$$\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \mathrm{ln}\left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\:\right).\frac{{dx}}{{x}\:\sqrt{\:\mathrm{1}−{x}^{\:\mathrm{2}} }}\:=\:\frac{\pi^{\:\mathrm{2}} }{\mathrm{2}} \\ $$$$\:\:\:\:\:−−\:{m}.{n}−− \\ $$$$ \\ $$

Question Number 164059    Answers: 0   Comments: 0

Air leaks from a spherical ballon so that it maintains its shape at a rate of 25 cc/m .What is the rate of change in the length of the radius of the balloon when the radius is 5 cm

$$\:\:\mathrm{Air}\:\mathrm{leaks}\:\mathrm{from}\:\mathrm{a}\:\mathrm{spherical}\:\mathrm{ballon}\:\mathrm{so}\:\mathrm{that}\: \\ $$$$\:\mathrm{it}\:\mathrm{maintains}\:\mathrm{its}\:\mathrm{shape}\:\mathrm{at}\:\mathrm{a}\:\mathrm{rate}\:\mathrm{of}\:\mathrm{25}\:\mathrm{cc}/\mathrm{m} \\ $$$$\:.\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{rate}\:\mathrm{of}\:\mathrm{change}\:\mathrm{in}\:\mathrm{the}\:\mathrm{length} \\ $$$$\:\:\mathrm{of}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{balloon}\:\mathrm{when}\:\mathrm{the}\:\mathrm{radius} \\ $$$$\:\:\mathrm{is}\:\mathrm{5}\:\mathrm{cm} \\ $$

Question Number 163928    Answers: 1   Comments: 0

f(x)=((2x^(100!) )/(100!))+x^(100) +1 find ((d^(100!) f(x))/dx^(100!) )=?

$${f}\left({x}\right)=\frac{\mathrm{2}{x}^{\mathrm{100}!} }{\mathrm{100}!}+{x}^{\mathrm{100}} +\mathrm{1} \\ $$$${find}\:\:\:\frac{{d}^{\mathrm{100}!} {f}\left({x}\right)}{{dx}^{\mathrm{100}!} }=? \\ $$

Question Number 163732    Answers: 0   Comments: 0

If , 𝛗 = ∫_(−∞) ^( +∞) (( sin(x).ln^( 2) (x ))/x) then find : Im (𝛗 ) = ? ■ m.n

$$ \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\mathrm{I}{f}\:,\:\:\boldsymbol{\phi}\:=\:\int_{−\infty} ^{\:+\infty} \frac{\:{sin}\left({x}\right).{ln}^{\:\mathrm{2}} \left({x}\:\right)}{{x}}\:\:{then} \\ $$$$\:\:\:\:\:\:{find}\:\::\:\:\:\:\:\:\:\:\:\mathcal{I}{m}\:\left(\boldsymbol{\phi}\:\right)\:=\:?\:\:\:\:\:\:\:\:\:\:\blacksquare\:{m}.{n}\: \\ $$$$ \\ $$

Question Number 163704    Answers: 2   Comments: 0

Ω= Σ_(n=1) ^∞ n(ζ (1+n) −1) =?

$$ \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\:\Omega=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{n}\left(\zeta\:\left(\mathrm{1}+{n}\right)\:−\mathrm{1}\right)\:=? \\ $$$$ \\ $$

Question Number 163700    Answers: 3   Comments: 0

K(x) = ((3 cos x)/(5+4sin x)) {: ((max K(x))),((min K(x))) } =?

$$\:\:\mathcal{K}\left({x}\right)\:=\:\frac{\mathrm{3}\:\mathrm{cos}\:{x}}{\mathrm{5}+\mathrm{4sin}\:{x}} \\ $$$$\:\left.\begin{matrix}{{max}\:\mathcal{K}\left({x}\right)}\\{{min}\:\mathcal{K}\left({x}\right)}\end{matrix}\right\}\:=? \\ $$

Question Number 163682    Answers: 1   Comments: 0

Ω= ∫_0 ^( 1) (Li_( 2) ^ (x ))^( 2) dx = ? ■ m.n −−− −−−

$$ \\ $$$$\:\:\:\:\:\Omega=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\left(\mathrm{Li}_{\:\mathrm{2}} ^{\:} \left({x}\:\right)\right)^{\:\mathrm{2}} {dx}\:=\:?\:\:\:\:\:\:\blacksquare\:{m}.{n}\:\:\: \\ $$$$\:\:\:\:\:−−−\:−−− \\ $$$$\:\:\:\: \\ $$

Question Number 163613    Answers: 0   Comments: 0

Question Number 163533    Answers: 0   Comments: 5

Re^ soudre (∂^2 u/∂x^2 )+(∂^2 u/∂y^2 )=e^(2x+y)

$$\mathrm{R}\acute {\mathrm{e}soudre}\:\:\:\:\:\:\frac{\partial^{\mathrm{2}} {u}}{\partial{x}^{\mathrm{2}} }+\frac{\partial^{\mathrm{2}} {u}}{\partial{y}^{\mathrm{2}} }={e}^{\mathrm{2}{x}+{y}} \\ $$

Question Number 163510    Answers: 0   Comments: 1

If 𝛗=∫_0 ^( (π/2)) (( 1)/( (√(sin^( 5) (x).cos(x))) +(√(cos^( 5) (x).sin(x)))))dx = find the value of : Γ^( 2) ((3/4) ). 𝛗

$$ \\ $$$$\:\:\:\:\:\:\mathrm{I}{f} \\ $$$$\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{\:\mathrm{1}}{\:\sqrt{{sin}^{\:\mathrm{5}} \left({x}\right).{cos}\left({x}\right)}\:+\sqrt{{cos}^{\:\mathrm{5}} \left({x}\right).{sin}\left({x}\right)}}{dx}\:= \\ $$$$\:\:\:{find}\:{the}\:{value}\:{of}\:\::\:\Gamma^{\:\mathrm{2}} \left(\frac{\mathrm{3}}{\mathrm{4}}\:\right).\:\boldsymbol{\phi} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$

Question Number 163487    Answers: 1   Comments: 0

Ω= ∫_0 ^( 1) (( sin^( 2) ( ln(x )). ln (x))/( (√x))) dx=? −−−−−

$$ \\ $$$$\:\Omega=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{sin}^{\:\mathrm{2}} \left(\:\mathrm{ln}\left({x}\:\right)\right).\:\mathrm{ln}\:\left({x}\right)}{\:\sqrt{{x}}}\:{dx}=? \\ $$$$\:\:\:\:−−−−− \\ $$

Question Number 163400    Answers: 2   Comments: 0

prove Ω= ∫_0 ^( ∞) cot^( −1) (1+x^( 2) )=((√((1/( (√2)))−(1/2))) ) π

$$ \\ $$$$\:\:\:\:\:{prove}\: \\ $$$$\:\:\:\:\:\Omega=\:\int_{\mathrm{0}} ^{\:\infty} {cot}^{\:−\mathrm{1}} \left(\mathrm{1}+{x}^{\:\mathrm{2}} \right)=\left(\sqrt{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}−\frac{\mathrm{1}}{\mathrm{2}}}\:\right)\:\:\pi \\ $$$$ \\ $$

Question Number 163367    Answers: 2   Comments: 0

Question Number 163271    Answers: 0   Comments: 0

put : gcd( a , b )= (a, b ) if ( a ,b )= (a ,c )= (b ,c )=1 prove that : (abc , ab +ac +bc )=1

$$ \\ $$$$\:\:\:\:\:\:{put}\::\:\:{gcd}\left(\:{a}\:,\:{b}\:\right)=\:\left({a},\:{b}\:\right) \\ $$$$\:\:\:\:\:\:\:{if}\:\:\:\left(\:{a}\:,{b}\:\right)=\:\left({a}\:,{c}\:\right)=\:\left({b}\:,{c}\:\right)=\mathrm{1} \\ $$$${prove}\:{that}\::\:\:\left({abc}\:,\:{ab}\:+{ac}\:+{bc}\:\right)=\mathrm{1} \\ $$$$ \\ $$

Question Number 163257    Answers: 0   Comments: 0

Re ( ∫_0 ^( 1) sin^( −1) ((( 1)/(1− x^( 2) )) )dx )=?

$$ \\ $$$$\:\:\:\:\:\mathscr{R}{e}\:\left(\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {sin}^{\:−\mathrm{1}} \left(\frac{\:\mathrm{1}}{\mathrm{1}−\:{x}^{\:\mathrm{2}} }\:\right){dx}\:\right)=? \\ $$$$ \\ $$

Question Number 163191    Answers: 0   Comments: 1

Question Number 163134    Answers: 1   Comments: 0

prove or disprove ∫_(2π) ^( 4π) (( sin(x))/x) dx >0 because ∫_(2π) ^( 3π) (( sin(x ))/x) dx > ∫_(3π) ^( 4π) ((∣sin(x)∣)/x) dx

$$ \\ $$$$\:\:\:\:{prove}\:\:{or}\:{disprove} \\ $$$$ \\ $$$$\:\:\:\:\int_{\mathrm{2}\pi} ^{\:\mathrm{4}\pi} \frac{\:{sin}\left({x}\right)}{{x}}\:{dx}\:>\mathrm{0} \\ $$$$\:\:\:\:\:\:\:{because} \\ $$$$\:\int_{\mathrm{2}\pi} ^{\:\mathrm{3}\pi} \frac{\:{sin}\left({x}\:\right)}{{x}}\:{dx}\:>\:\int_{\mathrm{3}\pi} ^{\:\mathrm{4}\pi} \frac{\mid{sin}\left({x}\right)\mid}{{x}}\:{dx} \\ $$$$ \\ $$

Question Number 163080    Answers: 1   Comments: 0

F(x)= (((x^2 −4x)^2 ))^(1/3) {: ((local maximum)),((absolut maximum)) } =?

$$\:\:\:\:\:\:\:{F}\left({x}\right)=\:\sqrt[{\mathrm{3}}]{\left({x}^{\mathrm{2}} −\mathrm{4}{x}\right)^{\mathrm{2}} }\: \\ $$$$\:\:\left.\begin{matrix}{{local}\:{maximum}}\\{{absolut}\:{maximum}}\end{matrix}\right\}\:=? \\ $$

Question Number 163045    Answers: 1   Comments: 0

prove that Σ_(n=1) ^∞ (( ( 2n+1 )!!)/((2n )!!)) (1/(2^( n) (2n +1)^( 2) )) =((π(√2))/4)−1

$$ \\ $$$$\:\:\:\:\:{prove}\:{that} \\ $$$$ \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\left(\:\mathrm{2}{n}+\mathrm{1}\:\right)!!}{\left(\mathrm{2}{n}\:\right)!!}\:\frac{\mathrm{1}}{\mathrm{2}^{\:{n}} \left(\mathrm{2}{n}\:+\mathrm{1}\right)^{\:\mathrm{2}} }\:=\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{4}}−\mathrm{1} \\ $$

Question Number 163033    Answers: 1   Comments: 0

Ω= ∫_0 ^( ∞) (( x − sin (x ))/x^( 3) )dx −−− solution−−− Ω=^(I.B.P) [ ((−1)/(2 x^( 2) )) (x−sin(x))]_0 ^∞ +(1/2) ∫_0 ^( ∞) ((1−cos (x))/x^( 2) )dx = (1/2) ∫_0 ^( ∞) (( 2sin^( 2) ((x/2)))/x^( 2) )dx=∫_0 ^( ∞) ((sin^( 2) ((x/2)))/x^( 2) )dx =^((x/2) = α) (1/2)∫_0 ^( ∞) ((sin^( 2) ( α))/α^( 2) ) dα = (1/2) [((−1)/α) sin^( 2) (α)]_0 ^∞ +(1/2)∫_0 ^( ∞) ((sin(2α))/α)dα =^(2α=ϕ) (1/2) ∫_0 ^( ∞) (( sin(ϕ ))/ϕ) dϕ =(π/4) −− Ω= (π/4) −−−

$$ \\ $$$$\:\:\:\:\Omega=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{x}\:−\:{sin}\:\left({x}\:\right)}{{x}^{\:\mathrm{3}} }{dx} \\ $$$$−−−\:{solution}−−− \\ $$$$\:\:\:\:\:\Omega\overset{\mathscr{I}.\mathscr{B}.\mathscr{P}} {=}\:\left[\:\frac{−\mathrm{1}}{\mathrm{2}\:{x}^{\:\mathrm{2}} }\:\left({x}−{sin}\left({x}\right)\right)\right]_{\mathrm{0}} ^{\infty} +\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{1}−{cos}\:\left({x}\right)}{{x}^{\:\mathrm{2}} }{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:\:\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:\mathrm{2}{sin}^{\:\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}{{x}^{\:\mathrm{2}} }{dx}=\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}^{\:\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}{{x}^{\:\mathrm{2}} }{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\overset{\frac{{x}}{\mathrm{2}}\:=\:\alpha} {=}\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}^{\:\mathrm{2}} \left(\:\alpha\right)}{\alpha^{\:\mathrm{2}} }\:{d}\alpha\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\left[\frac{−\mathrm{1}}{\alpha}\:{sin}^{\:\mathrm{2}} \left(\alpha\right)\right]_{\mathrm{0}} ^{\infty} +\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left(\mathrm{2}\alpha\right)}{\alpha}{d}\alpha \\ $$$$\:\:\:\:\:\:\:\:\overset{\mathrm{2}\alpha=\varphi} {=}\:\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{sin}\left(\varphi\:\right)}{\varphi}\:{d}\varphi\:=\frac{\pi}{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−−\:\:\:\:\:\Omega=\:\frac{\pi}{\mathrm{4}}\:\:−−− \\ $$$$ \\ $$$$ \\ $$

Question Number 163002    Answers: 0   Comments: 0

prove that i:Σ_(n=0) ^∞ (((−1 )^( n) )/((n +(1/2))cosh(n+(1/2))π)) =(π/4) ii: ∫_0 ^( 1) (( sin( π x ))/(x^( x) ( 1−x )^( 1−x) )) (dx/(1+x)) =(π/4) −−−

$$ \\ $$$$\:\:\:{prove}\:{that} \\ $$$$ \\ $$$$\:{i}:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\left(−\mathrm{1}\:\right)^{\:{n}} }{\left({n}\:+\frac{\mathrm{1}}{\mathrm{2}}\right){cosh}\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)\pi}\:=\frac{\pi}{\mathrm{4}} \\ $$$$\:\:{ii}:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{sin}\left(\:\pi\:{x}\:\right)}{{x}^{\:{x}} \left(\:\mathrm{1}−{x}\:\right)^{\:\mathrm{1}−{x}} }\:\frac{{dx}}{\mathrm{1}+{x}}\:=\frac{\pi}{\mathrm{4}} \\ $$$$\:\:\:\:\:\:−−− \\ $$

Question Number 162939    Answers: 0   Comments: 0

lim_( x→ 3) ( a ⌊x ⌋ + ⌊ −x⌋).tan(((πx)/2) )=−∞ a ∈ ?

$$ \\ $$$$\:\:{lim}_{\:{x}\rightarrow\:\mathrm{3}} \:\left(\:{a}\:\lfloor{x}\:\rfloor\:+\:\lfloor\:−{x}\rfloor\right).{tan}\left(\frac{\pi{x}}{\mathrm{2}}\:\right)=−\infty \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{a}\:\in\:? \\ $$$$ \\ $$

Question Number 162924    Answers: 2   Comments: 0

𝛗 =∫_0 ^( ∞) (( e^( −x^( 2) ) .ln( x ))/( (√x))) dx=λ Γ((1/4)) λ=? ■

$$\: \\ $$$$\:\boldsymbol{\phi}\:=\int_{\mathrm{0}} ^{\:\infty} \frac{\:{e}^{\:−{x}^{\:\mathrm{2}} } .\mathrm{ln}\left(\:{x}\:\right)}{\:\sqrt{{x}}}\:{dx}=\lambda\:\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\lambda=?\:\:\:\:\:\:\:\:\:\:\:\:\:\blacksquare \\ $$$$ \\ $$

Question Number 162804    Answers: 2   Comments: 0

Ω = ∫ sin^( 2) (x).cos^( 4) (x ) dx

$$ \\ $$$$ \\ $$$$\:\:\:\Omega\:=\:\int\:{sin}^{\:\mathrm{2}} \left({x}\right).{cos}^{\:\mathrm{4}} \left({x}\:\right)\:{dx} \\ $$$$ \\ $$

Question Number 162701    Answers: 1   Comments: 0

  Pg 6      Pg 7      Pg 8      Pg 9      Pg 10      Pg 11      Pg 12      Pg 13      Pg 14      Pg 15   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com