Question and Answers Forum

All Questions   Topic List

DifferentiationQuestion and Answers: Page 1

Question Number 216800    Answers: 1   Comments: 0

Question Number 216694    Answers: 4   Comments: 0

Prove that ^3 (√((√5)+2)) −^3 (√((√5)−2)) =1

$${Prove}\:{that}\:\:^{\mathrm{3}} \sqrt{\sqrt{\mathrm{5}}+\mathrm{2}}\:−^{\mathrm{3}} \sqrt{\sqrt{\mathrm{5}}−\mathrm{2}}\:=\mathrm{1} \\ $$

Question Number 216638    Answers: 1   Comments: 1

without using LHopital rule evalute lim_(x→0) ((ln(1−x)−sin(x) )/(1−cox^2 (x)))

$$\:\:\boldsymbol{{without}}\:\boldsymbol{{using}}\:\boldsymbol{{LHopital}} \\ $$$$\:\:\:\boldsymbol{{rule}}\:\boldsymbol{{evalute}}\: \\ $$$$\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\boldsymbol{{ln}}\left(\mathrm{1}−{x}\right)−\boldsymbol{{sin}}\left(\boldsymbol{{x}}\right)\:}{\mathrm{1}−\boldsymbol{{cox}}^{\mathrm{2}} \left(\boldsymbol{{x}}\right)} \\ $$

Question Number 216411    Answers: 1   Comments: 0

(dx/dx)

$$\frac{{dx}}{{dx}} \\ $$

Question Number 215979    Answers: 0   Comments: 0

u_n = Σ_(k=n+1) ^(2n) (1/k) and v_n = Σ_(k=n) ^(2n−1) (1/k) • show that u_n and v_n are adjacent use ln(x+1) ≤ x and x≤−ln(1−x) and • show that u_n ≤ Σ_(k=n+1) ^(2n) (ln(k)−ln(k−1)) hence deduce that u_n ≤ ln2 • show that v_n ≥ Σ_(k=n) ^(2n−1) (ln(k+1)−ln(k)) hence deduce that v_n ≥ln2

$${u}_{{n}} \:=\:\underset{{k}={n}+\mathrm{1}} {\overset{\mathrm{2}{n}} {\sum}}\frac{\mathrm{1}}{{k}}\:{and}\:{v}_{{n}} \:=\:\underset{{k}={n}} {\overset{\mathrm{2}{n}−\mathrm{1}} {\sum}}\frac{\mathrm{1}}{{k}} \\ $$$$\bullet\:{show}\:{that}\:{u}_{{n}} \:{and}\:{v}_{{n}} \:{are}\:{adjacent} \\ $$$${use}\:{ln}\left({x}+\mathrm{1}\right)\:\leqslant\:{x}\:{and}\:{x}\leqslant−{ln}\left(\mathrm{1}−{x}\right)\:{and} \\ $$$$\bullet\:{show}\:{that}\:{u}_{{n}} \:\leqslant\:\underset{{k}={n}+\mathrm{1}} {\overset{\mathrm{2}{n}} {\sum}}\left({ln}\left({k}\right)−{ln}\left({k}−\mathrm{1}\right)\right) \\ $$$${hence}\:{deduce}\:{that}\:{u}_{{n}} \:\leqslant\:{ln}\mathrm{2} \\ $$$$\bullet\:{show}\:{that}\:{v}_{{n}} \:\geqslant\:\underset{{k}={n}} {\overset{\mathrm{2}{n}−\mathrm{1}} {\sum}}\left({ln}\left({k}+\mathrm{1}\right)−{ln}\left({k}\right)\right) \\ $$$${hence}\:{deduce}\:{that}\:{v}_{{n}} \geqslant{ln}\mathrm{2} \\ $$

Question Number 215958    Answers: 2   Comments: 0

Find the only function that satisfy the expression below: ((dy/dx))^2 = (d^2 y/dx^2 )

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{only}\:\mathrm{function}\:\mathrm{that}\:\mathrm{satisfy} \\ $$$$\mathrm{the}\:\mathrm{expression}\:\mathrm{below}: \\ $$$$\:\:\:\:\:\:\:\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{\mathrm{2}} \:\:=\:\:\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} } \\ $$

Question Number 215528    Answers: 0   Comments: 2

Question Number 215199    Answers: 0   Comments: 0

$$\:\:\:\:\:\downharpoonleft\underline{\:} \\ $$

Question Number 215809    Answers: 1   Comments: 0

If f(x) = 2 + ∫_1 ^(−x^3 ) (√(2+u^2 )) du find the value of (d/dx) [f^(−1) (x)]_(x=2)

$$\:\:\:\mathrm{If}\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{2}\:+\:\underset{\mathrm{1}} {\overset{−\mathrm{x}^{\mathrm{3}} } {\int}}\sqrt{\mathrm{2}+\mathrm{u}^{\mathrm{2}} }\:\mathrm{du}\: \\ $$$$\:\:\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\frac{\mathrm{d}}{\mathrm{dx}}\:\left[\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right)\right]_{\mathrm{x}=\mathrm{2}} \\ $$

Question Number 214726    Answers: 0   Comments: 0

for the function z = xtan^(−1) ((y/x))+ysin^(−1) ((x/y))+2 then the value of x(∂z/∂x)+y(∂z/∂y)=?

$$\mathrm{for}\:\mathrm{the}\:\mathrm{function}\:{z}\:=\:{x}\mathrm{tan}^{−\mathrm{1}} \left(\frac{{y}}{{x}}\right)+{y}\mathrm{sin}^{−\mathrm{1}} \left(\frac{{x}}{{y}}\right)+\mathrm{2} \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{x}\frac{\partial{z}}{\partial{x}}+{y}\frac{\partial{z}}{\partial{y}}=?\: \\ $$

Question Number 214335    Answers: 1   Comments: 0

For what values of k does the equation e^(kx) =3(√x) have only one solution in R?

$$\mathrm{For}\:\mathrm{what}\:\mathrm{values}\:\mathrm{of}\:{k}\:\mathrm{does}\:\mathrm{the}\:\mathrm{equation} \\ $$$${e}^{{kx}} =\mathrm{3}\sqrt{{x}}\:\mathrm{have}\:\mathrm{only}\:\mathrm{one}\:\mathrm{solution}\:\mathrm{in}\:\mathbb{R}? \\ $$

Question Number 214000    Answers: 0   Comments: 4

Let y(x) be the solution of diff eq. y ′= ((cos x+y)/(cos x)) , y(0)=0 Find y((π/6)).

$$\:\:\mathrm{Let}\:\mathrm{y}\left(\mathrm{x}\right)\:\mathrm{be}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{diff}\:\mathrm{eq}. \\ $$$$\:\:\mathrm{y}\:'=\:\frac{\mathrm{cos}\:\mathrm{x}+\mathrm{y}}{\mathrm{cos}\:\mathrm{x}}\:,\:\mathrm{y}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$\:\:\mathrm{Find}\:\mathrm{y}\left(\frac{\pi}{\mathrm{6}}\right). \\ $$

Question Number 213664    Answers: 2   Comments: 0

Question Number 212928    Answers: 2   Comments: 1

Question Number 212171    Answers: 0   Comments: 0

Question Number 211594    Answers: 0   Comments: 1

If , H_n ^( −) =1−(1/2) +(1/3) −...+(((−1)^(n+1) )/n) prove that:Σ_(n=1) ^∞ ((H_n ^( − ) −ln(2))/n)=ln^2 (2) −−−−−−−−−−

$$ \\ $$$$\:{If}\:,\:\:\overset{\:\:−} {{H}}_{{n}} \:=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{3}}\:−...+\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{{n}}\:\:\: \\ $$$${prove}\:{that}:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\overset{\:\:−\:} {{H}}_{{n}} −\mathrm{ln}\left(\mathrm{2}\right)}{{n}}=\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:−−−−−−−−−−\:\:\:\:\:\: \\ $$

Question Number 211508    Answers: 1   Comments: 3

If (√(1 − x^2 )) + (√(1 − y^2 )) = a(x − y) then prove that (dy/dx) = (√(((1 − y^2 )/(1 − x^2 )) )) .

$$\mathrm{If}\:\sqrt{\mathrm{1}\:−\:{x}^{\mathrm{2}} }\:+\:\sqrt{\mathrm{1}\:−\:{y}^{\mathrm{2}} }\:=\:{a}\left({x}\:−\:{y}\right)\:\mathrm{then} \\ $$$$\mathrm{prove}\:\mathrm{that}\:\frac{{dy}}{{dx}}\:=\:\sqrt{\frac{\mathrm{1}\:−\:{y}^{\mathrm{2}} }{\mathrm{1}\:−\:{x}^{\mathrm{2}} }\:}\:. \\ $$

Question Number 211502    Answers: 2   Comments: 0

If { ((f(x)=x^2 )),((g(x)=sin x)) :}, Then find (df/dg).

$$\mathrm{If}\:\begin{cases}{{f}\left({x}\right)={x}^{\mathrm{2}} }\\{{g}\left({x}\right)=\mathrm{sin}\:{x}}\end{cases}, \\ $$$$\mathrm{Then}\:\mathrm{find}\:\frac{{df}}{{dg}}. \\ $$

Question Number 211365    Answers: 2   Comments: 0

Question Number 211321    Answers: 1   Comments: 0

$$\:\:\:\:\underbrace{\:} \\ $$

Question Number 210807    Answers: 0   Comments: 0

Question Number 210702    Answers: 2   Comments: 0

How many real solutions does the equation x=sin3x have?

$$\mathrm{How}\:\mathrm{many}\:\mathrm{real}\:\mathrm{solutions}\:\mathrm{does}\:\mathrm{the} \\ $$$$\mathrm{equation}\:{x}=\mathrm{sin3}{x}\:\mathrm{have}? \\ $$

Question Number 210248    Answers: 1   Comments: 0

Question Number 209924    Answers: 0   Comments: 0

If f(x)=(x!)∙(x!!)∙(x!!!) find (d/dx)(f(x))=?

$$\boldsymbol{{If}}\:\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)=\left(\boldsymbol{{x}}!\right)\centerdot\left(\boldsymbol{{x}}!!\right)\centerdot\left(\boldsymbol{{x}}!!!\right)\:\: \\ $$$$\boldsymbol{{find}}\:\:\frac{\boldsymbol{{d}}}{\boldsymbol{{dx}}}\left(\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)\right)=? \\ $$

Question Number 209624    Answers: 1   Comments: 0

I=∫_0 ^( ∞) ∫_0 ^( ∞) (( 1)/(1+ x^2 +y^2 +x^2 y^2 )) dxdy=? using polar system...

$$ \\ $$$$ \\ $$$$\mathrm{I}=\int_{\mathrm{0}} ^{\:\infty} \int_{\mathrm{0}} ^{\:\infty} \:\frac{\:\mathrm{1}}{\mathrm{1}+\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+{x}^{\mathrm{2}} {y}^{\mathrm{2}} }\:{dxdy}=? \\ $$$$\:{using}\:\:\:\:{polar}\:\:{system}... \\ $$

Question Number 209308    Answers: 1   Comments: 0

Donner l′e^ quivalence simple de I_n =∫^( 1) _( 0) (t^n /(t^n −t+1))dt

$$\mathrm{Donner}\:\mathrm{l}'\acute {\mathrm{e}quivalence}\:\mathrm{simple} \\ $$$$\mathrm{de}\:\mathrm{I}_{\mathrm{n}} =\underset{\:\mathrm{0}} {\int}^{\:\mathrm{1}} \frac{{t}^{{n}} }{{t}^{{n}} −{t}+\mathrm{1}}{dt} \\ $$

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com