L 60
1. y=x^2 +5x
Find the equation of a line with the slope of 7 that touches y=x^2 +5x.
[Sol.] Let f(x)=x^2 +5x Then f′(x)=2x+5
Since 2x+5=7⇒x=1 then the point is (1, 1^2 +5∙1)=(1, 6)
So the equation of a line is y−6=7(x−1)⇒y=7x−1
2. y=ax^2 +bx (2, 2) a, b
Find the values of constants a, b that the slope of the line that touches (2, 2) and y=ax^2 +bx is 5.
[Sol.] Let f(x)=ax^2 +bx Then f′(x)=2ax+b and build two equations to solve for a and b
{ ((f(2)=a∙2^2 +b∙2=4a+2b=2)),((f′(2)=2a∙2+b=4a+b=5)) :}
Solving for a, b gives a=2, b=−3
3. y=x^3 −3x^2 −1
Find the equation of a line that is drawn, touches y=x^3 −3x^2 −1.
[Sol.] The line of the equation is y−(a^3 −3a^2 −1)=(3a^2 −6a)(x−a)
Calculating gives y=(3a^2 −6a)x−(3a^2 −6a)a+(a^3 −3a^2 −1)
y=(3a^2 −6a)x+(−3a^3 +6a^2 )+(a^3 −3a^2 −1)
y=(3a^2 −6a)x+(−2a^3 +3a^2 −1)
−2a^3 +3a^2 −1=0
a=−(1/2) or a=2
...a=−3x, a=((15)/4)x
(211)
Find the derivative of Δx, where
Δx= determinant (((f_1 (x)),(φ_1 (x)),(Ψ_1 (x))),((f_2 (x)),(φ_2 (x)),(Ψ_2 (x))),((f_3 (x)),(φ_3 (x)),(Ψ_3 (x))))
and f_1 (x) ,f_2 (x), f_3 (x),φ_1 (x), etc. are different functions of x.
If f(x,y)=(((x^2 +y^2 )^n )/(2n(2n−1)))+xφ((y/x))+Ψ((y/x)),
then using Euler′s theorem on homogenous functions,show that
x^2 ((δ^2 f)/(δx^2 ))+2xy((δ^2 f)/(δxδy))+y^2 ((δ^2 f)/(δy^2 ))=(x^2 +y^2 )^n
u_n = Σ_(k=n+1) ^(2n) (1/k) and v_n = Σ_(k=n) ^(2n−1) (1/k)
• show that u_n and v_n are adjacent
use ln(x+1) ≤ x and x≤−ln(1−x) and
• show that u_n ≤ Σ_(k=n+1) ^(2n) (ln(k)−ln(k−1))
hence deduce that u_n ≤ ln2
• show that v_n ≥ Σ_(k=n) ^(2n−1) (ln(k+1)−ln(k))
hence deduce that v_n ≥ln2