L 60
1. y=x^2 +5x
Find the equation of a line with the slope of 7 that touches y=x^2 +5x.
[Sol.] Let f(x)=x^2 +5x Then fβ²(x)=2x+5
Since 2x+5=7βx=1 then the point is (1, 1^2 +5β1)=(1, 6)
So the equation of a line is yβ6=7(xβ1)βy=7xβ1
2. y=ax^2 +bx (2, 2) a, b
Find the values of constants a, b that the slope of the line that touches (2, 2) and y=ax^2 +bx is 5.
[Sol.] Let f(x)=ax^2 +bx Then fβ²(x)=2ax+b and build two equations to solve for a and b
{ ((f(2)=aβ2^2 +bβ2=4a+2b=2)),((fβ²(2)=2aβ2+b=4a+b=5)) :}
Solving for a, b gives a=2, b=β3
3. y=x^3 β3x^2 β1
Find the equation of a line that is drawn, touches y=x^3 β3x^2 β1.
[Sol.] The line of the equation is yβ(a^3 β3a^2 β1)=(3a^2 β6a)(xβa)
Calculating gives y=(3a^2 β6a)xβ(3a^2 β6a)a+(a^3 β3a^2 β1)
y=(3a^2 β6a)x+(β3a^3 +6a^2 )+(a^3 β3a^2 β1)
y=(3a^2 β6a)x+(β2a^3 +3a^2 β1)
β2a^3 +3a^2 β1=0
a=β(1/2) or a=2
...a=β3x, a=((15)/4)x
If V be a function of x and y, prove that
(β^2 V/βx^2 )+(β^2 V/βy^2 )=(β^2 V/βr^2 )+(1/r) (βV/βr)+(1/r^2 ) (β^2 V/βΞΈ^2 ),
where x=r cos ΞΈ , y=rsin ΞΈ
(211)
Find the derivative of Ξx, where
Ξx= determinant (((f_1 (x)),(Ο_1 (x)),(Ξ¨_1 (x))),((f_2 (x)),(Ο_2 (x)),(Ξ¨_2 (x))),((f_3 (x)),(Ο_3 (x)),(Ξ¨_3 (x))))
and f_1 (x) ,f_2 (x), f_3 (x),Ο_1 (x), etc. are different functions of x.
If f(x,y)=(((x^2 +y^2 )^n )/(2n(2nβ1)))+xΟ((y/x))+Ξ¨((y/x)),
then using Eulerβ²s theorem on homogenous functions,show that
x^2 ((Ξ΄^2 f)/(Ξ΄x^2 ))+2xy((Ξ΄^2 f)/(Ξ΄xΞ΄y))+y^2 ((Ξ΄^2 f)/(Ξ΄y^2 ))=(x^2 +y^2 )^n