Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 68331 by Peculiar last updated on 08/Sep/19

Differentiate y=ln tan^(−1) (3x^2 )_

$${Differentiate}\:{y}={ln}\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{3}{x}^{\mathrm{2}} \underset{} {\right)} \\ $$

Answered by MJS last updated on 08/Sep/19

y=h(g(f(x)))  y′=h′(g(f(x)))×g′(f(x))×f′(x)  h(t)=ln t ⇒ h′(t)=(1/t)  g(t)=arctan t ⇒ g′(t)=(1/(t^2 +1))  f(t)=3t^2  ⇒ f′(t)=6t  ⇒  y′=((6x)/((9x^4 +1)arctan (3x^2 )))

$${y}={h}\left({g}\left({f}\left({x}\right)\right)\right) \\ $$$${y}'={h}'\left({g}\left({f}\left({x}\right)\right)\right)×{g}'\left({f}\left({x}\right)\right)×{f}'\left({x}\right) \\ $$$${h}\left({t}\right)=\mathrm{ln}\:{t}\:\Rightarrow\:{h}'\left({t}\right)=\frac{\mathrm{1}}{{t}} \\ $$$${g}\left({t}\right)=\mathrm{arctan}\:{t}\:\Rightarrow\:{g}'\left({t}\right)=\frac{\mathrm{1}}{{t}^{\mathrm{2}} +\mathrm{1}} \\ $$$${f}\left({t}\right)=\mathrm{3}{t}^{\mathrm{2}} \:\Rightarrow\:{f}'\left({t}\right)=\mathrm{6}{t} \\ $$$$\Rightarrow \\ $$$${y}'=\frac{\mathrm{6}{x}}{\left(\mathrm{9}{x}^{\mathrm{4}} +\mathrm{1}\right)\mathrm{arctan}\:\left(\mathrm{3}{x}^{\mathrm{2}} \right)} \\ $$

Answered by peter frank last updated on 09/Sep/19

let u=tan^(−1) (3x^2 )  (du/dx)=((6x)/((1+9x^4 )))  y=ln u  (dy/du)=(1/u)=(1/(tan^(−1) (3x^2 )))  by chain rule  (dy/dx)=(dy/du).(du/dx)  (dy/dx)=((6x)/(tan^(−1) (3x^2 ).(1+9x^4 )))

$${let}\:{u}=\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{3}{x}^{\mathrm{2}} \right) \\ $$$$\frac{{du}}{{dx}}=\frac{\mathrm{6}{x}}{\left(\mathrm{1}+\mathrm{9}{x}^{\mathrm{4}} \right)} \\ $$$${y}=\mathrm{ln}\:{u} \\ $$$$\frac{{dy}}{{du}}=\frac{\mathrm{1}}{{u}}=\frac{\mathrm{1}}{\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{3}{x}^{\mathrm{2}} \right)} \\ $$$${by}\:{chain}\:{rule} \\ $$$$\frac{{dy}}{{dx}}=\frac{{dy}}{{du}}.\frac{{du}}{{dx}} \\ $$$$\frac{{dy}}{{dx}}=\frac{\mathrm{6}{x}}{\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{3}{x}^{\mathrm{2}} \right).\left(\mathrm{1}+\mathrm{9}{x}^{\mathrm{4}} \right)} \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com