Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 184187 by Mastermind last updated on 03/Jan/23

Differentiate, y=e^x  + x^x     M.m

$$\mathrm{Differentiate},\:\mathrm{y}=\mathrm{e}^{\mathrm{x}} \:+\:\mathrm{x}^{\mathrm{x}} \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$

Answered by SEKRET last updated on 03/Jan/23

   y = e^x +x^x          u= e^x      u′=e^x      t = x^x     ln(t) = x∙ln(x)       ((t ′)/t)  =  ln(x) +1      t ′ = t∙(1+ln(x))= x^x ∙(ln(x)+1)     y ′ =u ′ +  t ′      y  ′  = e^x  + x^x ∙(ln(x) + 1)

$$\:\:\:\boldsymbol{\mathrm{y}}\:=\:\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} +\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{x}}} \:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{u}}=\:\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} \:\:\:\:\:\boldsymbol{\mathrm{u}}'=\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} \\ $$$$\:\:\:\boldsymbol{\mathrm{t}}\:=\:\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{x}}} \:\:\:\:\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{t}}\right)\:=\:\boldsymbol{\mathrm{x}}\centerdot\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}\right) \\ $$$$\:\:\:\:\:\frac{\boldsymbol{\mathrm{t}}\:'}{\boldsymbol{\mathrm{t}}}\:\:=\:\:\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}\right)\:+\mathrm{1} \\ $$$$\:\:\:\:\boldsymbol{\mathrm{t}}\:'\:=\:\boldsymbol{\mathrm{t}}\centerdot\left(\mathrm{1}+\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}\right)\right)=\:\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{x}}} \centerdot\left(\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}\right)+\mathrm{1}\right) \\ $$$$\:\:\:\boldsymbol{\mathrm{y}}\:'\:=\boldsymbol{\mathrm{u}}\:'\:+\:\:\boldsymbol{\mathrm{t}}\:' \\ $$$$\:\:\:\:\boldsymbol{\mathrm{y}}\:\:'\:\:=\:\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} \:+\:\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{x}}} \centerdot\left(\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}\right)\:+\:\mathrm{1}\right) \\ $$

Commented by Mastermind last updated on 03/Jan/23

Good!

$$\mathrm{Good}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com