Question and Answers Forum
All Questions Topic List
Differential EquationQuestion and Answers: Page 1
Question Number 218396 Answers: 0 Comments: 0
Question Number 217797 Answers: 3 Comments: 0
$$\mathrm{Solve}: \\ $$$$\:\:\:\:\:\mathrm{5x}^{\mathrm{2}} \:\mathrm{y}''\:\:+\:\:\:\mathrm{x}\left(\mathrm{1}\:\:+\:\:\mathrm{x}\right)\:\mathrm{y}'\:\:−\:\:\mathrm{y}\:\:\:=\:\:\:\mathrm{0} \\ $$
Question Number 217245 Answers: 1 Comments: 0
$${find}\:{the}\:{following}\:{differential}\:{equation}\: \\ $$$${by}\:{eliminating}\:{the}\:{arbritrary}\:{constant} \\ $$$$\left(\mathrm{1}\right){y}={Ae}^{{x}} +{Bcosx} \\ $$$$\left(\mathrm{2}\right)\:{xy}={Ae}^{{x}} +{Be}^{−{x}} +{x}^{\mathrm{2}} \\ $$$$ \\ $$
Question Number 217046 Answers: 1 Comments: 0
$${form}\:{the}\:{differential}\:{equation}\:{by}\: \\ $$$${eliminating}\:{the}\:{arbritrary}\:{constant} \\ $$$${y}^{\mathrm{2}} ={Ax}^{\mathrm{2}} +{Bx}+{C} \\ $$
Question Number 216787 Answers: 1 Comments: 0
$${form}\:{the}\:{differential}\:{equationfrom}\:{the}\:{following} \\ $$$$\left.\mathrm{1}\right)\:{y}={Ae}^{\mathrm{3}{x}} +{Be}^{\mathrm{5}{x}} \\ $$$$\left.\mathrm{2}\right)\:{y}^{\mathrm{2}} =\left({x}−\mathrm{1}\right) \\ $$$$\left.\mathrm{3}\right)\:{c}\left({y}+{c}\right)^{\mathrm{2}} +{x}^{\mathrm{3}} =\mathrm{0} \\ $$
Question Number 215468 Answers: 2 Comments: 0
$$\frac{\partial{x}\omega}{\partial{y}\omega}\centerdot\frac{\partial{e}}{\partial\omega}=? \\ $$$${x}={f}\left({y}\right) \\ $$$$\omega={g}\left({y}\right) \\ $$$${e}={h}\left(\omega\right) \\ $$
Question Number 214813 Answers: 1 Comments: 1
$${Help}\:{me}\:{solve}\:{this} \\ $$$$\frac{{dy}}{{dx}}+\frac{{a}}{{y}}+{b}\sqrt{{x}}=\mathrm{0} \\ $$
Question Number 213097 Answers: 1 Comments: 0
$$\mathrm{Uhhhh}. \\ $$$$\mathrm{can}\:\mathrm{you}\:\mathrm{guys}\:\mathrm{solve}\:\mathrm{Partial}\:\mathrm{differantial}\:\mathrm{equation} \\ $$$$\bigtriangledown^{\mathrm{2}} \boldsymbol{\phi}=\mathrm{0} \\ $$$$\mathrm{Cylinderical}\:\mathrm{Laplacian}\:\mathrm{case} \\ $$$$\bigtriangledown^{\mathrm{2}} =\frac{\mathrm{1}}{\rho}\centerdot\frac{\partial\:\:}{\partial\rho}\left(\rho\frac{\partial\:\:}{\partial\rho}\right)+\left(\frac{\mathrm{1}}{\rho}\right)^{\mathrm{2}} \frac{\partial^{\mathrm{2}} \:}{\partial\phi^{\mathrm{2}} }+\frac{\partial^{\mathrm{2}} \:\:}{\partial{z}^{\mathrm{2}} } \\ $$$$\mathrm{Spherical}\:\mathrm{Laplacian}\:\mathrm{case} \\ $$$$\bigtriangledown^{\mathrm{2}} =\left(\frac{\mathrm{1}}{{r}}\right)^{\mathrm{2}} \frac{\partial\:\:}{\partial{r}}\left({r}^{\mathrm{2}} \frac{\partial\:\:}{\partial{r}}\right)+\frac{\mathrm{1}}{{r}^{\mathrm{2}} \mathrm{sin}\left(\theta\right)}\centerdot\frac{\partial\:\:}{\partial\theta}\left(\mathrm{sin}\left(\theta\right)\frac{\partial\:\:}{\partial\theta}\right)+\frac{\mathrm{1}}{{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \left(\theta\right)}\centerdot\frac{\partial^{\mathrm{2}} \:}{\partial\varphi^{\mathrm{2}} } \\ $$
Question Number 212895 Answers: 0 Comments: 0
Question Number 213371 Answers: 0 Comments: 1
Question Number 212435 Answers: 1 Comments: 0
Question Number 212307 Answers: 1 Comments: 0
$$ \\ $$$$\:\:{I}=\int_{\mathrm{0}} ^{\infty} \frac{\left({x}−\mathrm{arctan}\:{x}\right)^{\mathrm{2}} }{{x}^{\mathrm{4}} }{dx}. \\ $$
Question Number 212141 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\int\frac{\mathrm{cos}^{\mathrm{2}} {x}}{\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}{dx}. \\ $$$$ \\ $$
Question Number 212107 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{I}=\int_{\mathrm{0}} ^{\infty} \frac{{x}\:\mathrm{cos}\:{x}−\mathrm{sin}\:{x}}{{x}^{\mathrm{2}} }{dx}. \\ $$$$ \\ $$
Question Number 211738 Answers: 0 Comments: 1
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\int\frac{\mathrm{1}}{\boldsymbol{{x}}^{\mathrm{5}} +\mathrm{1}\:}\boldsymbol{{dx}}. \\ $$$$ \\ $$
Question Number 211703 Answers: 0 Comments: 2
$$ \\ $$$$\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{quadruple}\: \\ $$$$\mathrm{integralas}\:\mathrm{follows}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{I}}=\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\boldsymbol{{x}}} \int_{\mathrm{0}} ^{\boldsymbol{\mathrm{y}}} \int_{\mathrm{0}} ^{\boldsymbol{{z}}} \frac{\boldsymbol{\mathrm{sin}}\left(\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{y}}^{\mathrm{2}} +\boldsymbol{{z}}^{\mathrm{2}} +\boldsymbol{{w}}^{\mathrm{2}} \right)}{\mathrm{1}+\boldsymbol{{w}}^{\mathrm{2}} +\boldsymbol{{z}}^{\mathrm{2}} }\boldsymbol{{dw}}\:\boldsymbol{{dz}}\:\boldsymbol{\mathrm{dy}}\:\boldsymbol{{dx}} \\ $$$$ \\ $$
Question Number 211579 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int\frac{\mathrm{1}}{\left(\mathrm{1}−\boldsymbol{{x}}^{\mathrm{4}} \right)\sqrt{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }}\boldsymbol{{dx}}. \\ $$$$ \\ $$
Question Number 211560 Answers: 0 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{certificate}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{I}}=\int_{\mathrm{0}} ^{\frac{\boldsymbol{\pi}}{\mathrm{2}}} \sqrt{\sqrt{\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{ln}}^{\mathrm{2}} \boldsymbol{\mathrm{cos}}\left(\boldsymbol{{x}}\right)−\boldsymbol{\mathrm{lncos}}\left(\boldsymbol{{x}}\right)\boldsymbol{{dx}}}}=\frac{\boldsymbol{\pi}}{\mathrm{2}}\sqrt{\mathrm{2}\boldsymbol{\mathrm{ln}}\mathrm{2}} \\ $$$$ \\ $$
Question Number 211546 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int\frac{\boldsymbol{{dx}}}{\:\sqrt{\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{4}\boldsymbol{{x}}+\mathrm{13}}}=? \\ $$
Question Number 210786 Answers: 1 Comments: 0
Question Number 208739 Answers: 0 Comments: 0
Question Number 208569 Answers: 0 Comments: 0
$$\boldsymbol{{help}}\:\boldsymbol{{me}}\:\boldsymbol{{to}}\:\boldsymbol{{solve}}\:\boldsymbol{{this}}\:\boldsymbol{{please}} \\ $$$$\:\:\boldsymbol{{y}}''−\sqrt{\mathrm{1}+\boldsymbol{{y}}'^{\mathrm{2}} }=\boldsymbol{{x}}^{\mathrm{2}} \\ $$$$\boldsymbol{{solve}}\:\boldsymbol{{this}}\:\boldsymbol{{differential}}\:\boldsymbol{{equation}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 208303 Answers: 1 Comments: 0
$${Resolver} \\ $$$$\frac{\partial^{\mathrm{2}} {u}}{\partial{y}^{\mathrm{2}} }\:−\:{x}^{\mathrm{2}} {u}\:=\:{xe}^{\mathrm{4}{y}} \\ $$
Question Number 208264 Answers: 1 Comments: 0
$$\:\:\:\cancel{\underline{\underbrace{ }}} \\ $$
Question Number 207991 Answers: 2 Comments: 0
$$\:\:\:\:\:\mathrm{y}\:\underline{\underbrace{\mathcal{W}}} \\ $$
Question Number 207317 Answers: 2 Comments: 0
$${solve}\:{for}\:{y} \\ $$$$\frac{\mathrm{1}}{{y}'}+\frac{\mathrm{1}}{{y}''}=\mathrm{1} \\ $$
Pg 1 Pg 2 Pg 3 Pg 4 Pg 5 Pg 6 Pg 7 Pg 8 Pg 9 Pg 10
Terms of Service
Privacy Policy
Contact: info@tinkutara.com