Question and Answers Forum
All Questions Topic List
Differential EquationQuestion and Answers: Page 1
Question Number 227075 Answers: 0 Comments: 0
Question Number 227074 Answers: 0 Comments: 0
Question Number 226898 Answers: 0 Comments: 0
$$\mathrm{Reduce}\:\mathrm{to}\:\mathrm{canonical}\:\mathrm{form}: \\ $$$$\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)\frac{\partial^{\mathrm{2}} \mathrm{u}}{\partial\mathrm{x}^{\mathrm{2}} }+\mathrm{sin}^{\mathrm{2}} \left(\mathrm{2x}\right)\frac{\partial^{\mathrm{2}} \mathrm{u}}{\partial\mathrm{x}\partial\mathrm{y}}+\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}\right)\frac{\partial^{\mathrm{2}} \mathrm{u}}{\partial\mathrm{y}^{\mathrm{2}} }=\mathrm{0} \\ $$
Question Number 226961 Answers: 1 Comments: 0
$$\:\:\: \\ $$$$\:\:\:\:\:\sigma\:=\:\int_{\mathrm{0}} ^{\:\infty} {xe}^{−{x}} \:{J}_{\mathrm{2}} \left({x}\right){dx}=? \\ $$$$\:\:\:\: \\ $$
Question Number 226778 Answers: 0 Comments: 0
$${Solve}\:{the}\:{following}\:{D}.{E} \\ $$$$\left({a}\right)\:\frac{{dy}}{{dx}}+\mathrm{2}{y}={xy}^{\mathrm{2}} \\ $$$$\left({b}\right)\:\frac{{dy}}{{dx}}+\mathrm{3}\frac{{y}}{{x}}=\mathrm{2}{x}^{\mathrm{4}} {y}^{\mathrm{4}} \\ $$
Question Number 226777 Answers: 4 Comments: 0
$${Show}\:{that} \\ $$$$\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}} \left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{−\mathrm{1}} {dx}=\frac{\mathrm{4}−\pi}{\mathrm{4}} \\ $$$${Hence}\:{by}\:{using}\:{Simpson}^{'} {s} \\ $$$${rule}\:{find}\:{the}\:{value}\:\:{of}\:\pi\:{with}\: \\ $$$${eleven}\:{ordinates}. \\ $$$${correct}\:{to}\:\mathrm{4}\:{decimal}\:{places} \\ $$
Question Number 226732 Answers: 2 Comments: 0
Question Number 224335 Answers: 1 Comments: 0
Question Number 224036 Answers: 0 Comments: 0
$$\:\frac{{dy}}{{dx}}=\frac{{y}^{\mathrm{6}} −\mathrm{2}{x}^{\mathrm{2}} }{\mathrm{2}{xy}^{\mathrm{5}} +{x}^{\mathrm{2}} {y}^{\mathrm{2}} } \\ $$
Question Number 224025 Answers: 0 Comments: 0
$${Resuelve}\:{la}\:{ecuaci}\acute {{o}n}\:{diferencial} \\ $$$$\left[\mathrm{4}{x}^{\mathrm{3}} {y}\:−\:\frac{{e}^{{xy}} }{{x}}\:+\:{y}\:\mathrm{ln}\left({x}\right)\:+\:{x}\:\sqrt[{\mathrm{3}}]{{x}\:−\:\mathrm{4}}\right]{dx}\:+\:\left[{x}^{\mathrm{4}} −\:\frac{{e}^{{xy}} }{{y}}\:+\:{x}\:\mathrm{ln}\left({x}\right)\:−\:{x}\right]{dy} \\ $$$${Help}\:.... \\ $$
Question Number 223988 Answers: 0 Comments: 0
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{DE}\:\mathrm{using}\:\mathrm{the}\:\mathrm{method}\:\mathrm{of}\:\mathrm{Frobenius}\::\: \\ $$$$\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)\mathrm{y}''−\mathrm{2xy}'+\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)\mathrm{y}=\mathrm{0} \\ $$
Question Number 223054 Answers: 0 Comments: 0
$$\mathrm{find}\:{y} \\ $$$${y}^{{dy}} =\:{x}^{{dx}} \\ $$
Question Number 222296 Answers: 0 Comments: 0
$$\left(\mathrm{1}+{x}^{\mathrm{4}} \right){y}'−{x}^{\mathrm{3}} {y}\:=\:{x}^{\mathrm{5}} −{x}^{\mathrm{3}} +\mathrm{2}{x}+\mathrm{1} \\ $$
Question Number 221973 Answers: 1 Comments: 0
$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }+{y}={k}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }−\frac{\mathrm{6}}{{x}^{\mathrm{4}} }\:\:\:\:\:\: \\ $$$${Find}\:{y}\left({x}\right)\:\:\:\:\left({k}\:{is}\:{constant}\right). \\ $$
Question Number 218396 Answers: 0 Comments: 0
Question Number 217797 Answers: 3 Comments: 0
$$\mathrm{Solve}: \\ $$$$\:\:\:\:\:\mathrm{5x}^{\mathrm{2}} \:\mathrm{y}''\:\:+\:\:\:\mathrm{x}\left(\mathrm{1}\:\:+\:\:\mathrm{x}\right)\:\mathrm{y}'\:\:−\:\:\mathrm{y}\:\:\:=\:\:\:\mathrm{0} \\ $$
Question Number 217245 Answers: 1 Comments: 0
$${find}\:{the}\:{following}\:{differential}\:{equation}\: \\ $$$${by}\:{eliminating}\:{the}\:{arbritrary}\:{constant} \\ $$$$\left(\mathrm{1}\right){y}={Ae}^{{x}} +{Bcosx} \\ $$$$\left(\mathrm{2}\right)\:{xy}={Ae}^{{x}} +{Be}^{−{x}} +{x}^{\mathrm{2}} \\ $$$$ \\ $$
Question Number 217046 Answers: 1 Comments: 0
$${form}\:{the}\:{differential}\:{equation}\:{by}\: \\ $$$${eliminating}\:{the}\:{arbritrary}\:{constant} \\ $$$${y}^{\mathrm{2}} ={Ax}^{\mathrm{2}} +{Bx}+{C} \\ $$
Question Number 216787 Answers: 1 Comments: 0
$${form}\:{the}\:{differential}\:{equationfrom}\:{the}\:{following} \\ $$$$\left.\mathrm{1}\right)\:{y}={Ae}^{\mathrm{3}{x}} +{Be}^{\mathrm{5}{x}} \\ $$$$\left.\mathrm{2}\right)\:{y}^{\mathrm{2}} =\left({x}−\mathrm{1}\right) \\ $$$$\left.\mathrm{3}\right)\:{c}\left({y}+{c}\right)^{\mathrm{2}} +{x}^{\mathrm{3}} =\mathrm{0} \\ $$
Question Number 215468 Answers: 2 Comments: 0
$$\frac{\partial{x}\omega}{\partial{y}\omega}\centerdot\frac{\partial{e}}{\partial\omega}=? \\ $$$${x}={f}\left({y}\right) \\ $$$$\omega={g}\left({y}\right) \\ $$$${e}={h}\left(\omega\right) \\ $$
Question Number 214813 Answers: 1 Comments: 1
$${Help}\:{me}\:{solve}\:{this} \\ $$$$\frac{{dy}}{{dx}}+\frac{{a}}{{y}}+{b}\sqrt{{x}}=\mathrm{0} \\ $$
Question Number 213097 Answers: 1 Comments: 0
$$\mathrm{Uhhhh}. \\ $$$$\mathrm{can}\:\mathrm{you}\:\mathrm{guys}\:\mathrm{solve}\:\mathrm{Partial}\:\mathrm{differantial}\:\mathrm{equation} \\ $$$$\bigtriangledown^{\mathrm{2}} \boldsymbol{\phi}=\mathrm{0} \\ $$$$\mathrm{Cylinderical}\:\mathrm{Laplacian}\:\mathrm{case} \\ $$$$\bigtriangledown^{\mathrm{2}} =\frac{\mathrm{1}}{\rho}\centerdot\frac{\partial\:\:}{\partial\rho}\left(\rho\frac{\partial\:\:}{\partial\rho}\right)+\left(\frac{\mathrm{1}}{\rho}\right)^{\mathrm{2}} \frac{\partial^{\mathrm{2}} \:}{\partial\phi^{\mathrm{2}} }+\frac{\partial^{\mathrm{2}} \:\:}{\partial{z}^{\mathrm{2}} } \\ $$$$\mathrm{Spherical}\:\mathrm{Laplacian}\:\mathrm{case} \\ $$$$\bigtriangledown^{\mathrm{2}} =\left(\frac{\mathrm{1}}{{r}}\right)^{\mathrm{2}} \frac{\partial\:\:}{\partial{r}}\left({r}^{\mathrm{2}} \frac{\partial\:\:}{\partial{r}}\right)+\frac{\mathrm{1}}{{r}^{\mathrm{2}} \mathrm{sin}\left(\theta\right)}\centerdot\frac{\partial\:\:}{\partial\theta}\left(\mathrm{sin}\left(\theta\right)\frac{\partial\:\:}{\partial\theta}\right)+\frac{\mathrm{1}}{{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \left(\theta\right)}\centerdot\frac{\partial^{\mathrm{2}} \:}{\partial\varphi^{\mathrm{2}} } \\ $$
Question Number 212895 Answers: 0 Comments: 0
Question Number 213371 Answers: 0 Comments: 1
Question Number 212435 Answers: 1 Comments: 0
Question Number 212307 Answers: 1 Comments: 0
$$ \\ $$$$\:\:{I}=\int_{\mathrm{0}} ^{\infty} \frac{\left({x}−\mathrm{arctan}\:{x}\right)^{\mathrm{2}} }{{x}^{\mathrm{4}} }{dx}. \\ $$
Pg 1 Pg 2 Pg 3 Pg 4 Pg 5 Pg 6 Pg 7 Pg 8 Pg 9 Pg 10
Terms of Service
Privacy Policy
Contact: info@tinkutara.com