Differential EquationQuestion and Answers: Page 1

help me to solve this please y′′−(√(1+y′^2 ))=x^2 solve this differential equation
Resolver (∂^2 u/∂y^2 ) − x^2 u = xe^(4y)
y W
solve for y (1/(y′))+(1/(y′′))=1
solve the Differential equation (dy/dx)=(((x+3y)/(2x)))
solve the first order differential equation: xdy − ydx = (xy)^(1/2) dx
let (d^2 y/dx^2 )+p(x)(dy/dx)+q(x)y=0 , x∈R where p(x) and q(x) are continuous function if y_1 = sinx−2cosx and y_2 = 2sinx +cosx are L.I (linearly independent) solution then ∣4p(0)+2q(1)∣ = ?
Resuelve la siguiente ecuacio^ n diferencial (dx/dy) + x^2 = (1/y^4 )
Let f(W) be a function of vector W ∈ R^N , i.e. f(W) = (1/(1 + e^(−W^T x) )) Determine the first derivative and matrix of second derivatives of f with respect to W
(d^(3 ) y/dx^3 )=4(x+(1/4))^2 −4y
solve the associated legendre equation λ=l (l+1)η^2 ;l=0,1,2... and m^2 ≤ l(l+1) which requires −l≤m≤l using power series
Calculate the first order energy correction for 1−dimensional non−degenerate anharmonic oscillator whose harmiltonian is HL
solve by laplce transform y^(′′) −y^′ +y =(x+1)e^x
solve (d^2 /dx^2 ) x
please check my answer (x−2y+5)dx+(2x−y+4)dy=0 X=x+a & Y=y+b (X−a−2Y+2b+5)dX+(2X−2a−Y+b+4)dY=0 -a+2b=-5 -2a+b=-4 a=1,b=-2 (X−2Y)dX+(2X−Y)dY=0 Y=XV⇒(dY/dX)=V+X(dV/dx) (X−2XV)+(2X−XV)(V+X(dV/dX))=0 (2X−XV)(V+X(dV/dX))=-X+2XV (V+X(dV/dX))=((-1+2V)/(2−V)) X(dV/dX)=((-1+2V)/(2−V))−V X(dV/dX)=((-1+2V−2V+V^( 2) )/(2−V)) X(dV/dX)=((V^( 2) −1)/(2−V)) ∫((2−V)/(V^( 2) −1))dV=∫(dX/X) ∫(1/(2(V−1)))+(3/(2(V+1)))dV=ln x+C (1/2)ln(V−1)+(3/2)ln(V+1) (1/2)ln(((y−2)/(x+1))−1)+(3/2)ln(((y−2)/(x+1))+1)=ln x+C