Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 185470 by Mastermind last updated on 22/Jan/23

Determine whether the series  U_n =((1+2n^2 )/(1+n^2 )) is convergent or not    M.m

$$\mathrm{Determine}\:\mathrm{whether}\:\mathrm{the}\:\mathrm{series} \\ $$$$\mathrm{U}_{\mathrm{n}} =\frac{\mathrm{1}+\mathrm{2n}^{\mathrm{2}} }{\mathrm{1}+\mathrm{n}^{\mathrm{2}} }\:\mathrm{is}\:\mathrm{convergent}\:\mathrm{or}\:\mathrm{not} \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$

Commented by mr W last updated on 22/Jan/23

U_n =2−(1/(1+n^2 ))  the rest you should know.

$${U}_{{n}} =\mathrm{2}−\frac{\mathrm{1}}{\mathrm{1}+{n}^{\mathrm{2}} } \\ $$$${the}\:{rest}\:{you}\:{should}\:{know}. \\ $$

Commented by Mastermind last updated on 22/Jan/23

I think the series is divergent simply   because A series cannot be convergent  unless it is ultimately tends to zero  lim_(n→0) U_n =0 converges  and is not equals zero

$$\mathrm{I}\:\mathrm{think}\:\mathrm{the}\:\mathrm{series}\:\mathrm{is}\:\mathrm{divergent}\:\mathrm{simply}\: \\ $$$$\mathrm{because}\:\mathrm{A}\:\mathrm{series}\:\mathrm{cannot}\:\mathrm{be}\:\mathrm{convergent} \\ $$$$\mathrm{unless}\:\mathrm{it}\:\mathrm{is}\:\mathrm{ultimately}\:\mathrm{tends}\:\mathrm{to}\:\mathrm{zero} \\ $$$$\mathrm{li}\underset{\mathrm{n}\rightarrow\mathrm{0}} {\mathrm{m}U}_{\mathrm{n}} =\mathrm{0}\:\mathrm{converges} \\ $$$$\mathrm{and}\:\mathrm{is}\:\mathrm{not}\:\mathrm{equals}\:\mathrm{zero} \\ $$$$ \\ $$

Commented by Frix last updated on 23/Jan/23

Is U_n =((1+2n^2 )/(1+n^2 )) a sequence (or progression)  and the series we′re talking about is  S_n =Σ_(k=0) ^n U_k  or is U_n =Σ_(k=0) ^n a_k =((1+2n^2 )/(1+n^2 )) and we  don′t know (and don′t need) a_n ?  In the 1^(st)  case S_∞ =+∞ (divergent), in the  2^(nd)  case U_∞ =Σ_(k=0) ^∞ a_k =2 (convergent).

$$\mathrm{Is}\:{U}_{{n}} =\frac{\mathrm{1}+\mathrm{2}{n}^{\mathrm{2}} }{\mathrm{1}+{n}^{\mathrm{2}} }\:\mathrm{a}\:\mathrm{sequence}\:\left(\mathrm{or}\:\mathrm{progression}\right) \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{series}\:\mathrm{we}'\mathrm{re}\:\mathrm{talking}\:\mathrm{about}\:\mathrm{is} \\ $$$${S}_{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{U}_{{k}} \:\mathrm{or}\:\mathrm{is}\:{U}_{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{{k}} =\frac{\mathrm{1}+\mathrm{2}{n}^{\mathrm{2}} }{\mathrm{1}+{n}^{\mathrm{2}} }\:\mathrm{and}\:\mathrm{we} \\ $$$$\mathrm{don}'\mathrm{t}\:\mathrm{know}\:\left(\mathrm{and}\:\mathrm{don}'\mathrm{t}\:\mathrm{need}\right)\:{a}_{{n}} ? \\ $$$$\mathrm{In}\:\mathrm{the}\:\mathrm{1}^{\mathrm{st}} \:\mathrm{case}\:{S}_{\infty} =+\infty\:\left(\mathrm{divergent}\right),\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{2}^{\mathrm{nd}} \:\mathrm{case}\:{U}_{\infty} =\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{{k}} =\mathrm{2}\:\left(\mathrm{convergent}\right). \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com