Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 192286 by pete last updated on 14/May/23

Determine whether f(x)=(1/x)(2x^2 +1)is:  1.A function  2. injective  3. surjective  4. bijective

$$\mathrm{Determine}\:\mathrm{whether}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{x}}\left(\mathrm{2x}^{\mathrm{2}} +\mathrm{1}\right)\mathrm{is}: \\ $$$$\mathrm{1}.\mathrm{A}\:\mathrm{function} \\ $$$$\mathrm{2}.\:\mathrm{injective} \\ $$$$\mathrm{3}.\:\mathrm{surjective} \\ $$$$\mathrm{4}.\:\mathrm{bijective} \\ $$

Answered by mehdee42 last updated on 14/May/23

if y=1⇒2x^2 −x+1=0⇒x=((1±(√(−3)))/4) ∉R⇒f is not surjective  f(a)=f(b)⇒(a−b)(2ab−1)=0⇒a=b ∨ a=(1/(2b)) ⇒f  is not injective

$${if}\:{y}=\mathrm{1}\Rightarrow\mathrm{2}{x}^{\mathrm{2}} −{x}+\mathrm{1}=\mathrm{0}\Rightarrow{x}=\frac{\mathrm{1}\pm\sqrt{−\mathrm{3}}}{\mathrm{4}}\:\notin\mathbb{R}\Rightarrow{f}\:{is}\:{not}\:{surjective} \\ $$$${f}\left({a}\right)={f}\left({b}\right)\Rightarrow\left({a}−{b}\right)\left(\mathrm{2}{ab}−\mathrm{1}\right)=\mathrm{0}\Rightarrow{a}={b}\:\vee\:{a}=\frac{\mathrm{1}}{\mathrm{2}{b}}\:\Rightarrow{f}\:\:{is}\:{not}\:{injective} \\ $$$$ \\ $$

Commented by mehdee42 last updated on 14/May/23

Commented by pete last updated on 14/May/23

thank you sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com