Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 137943 by john_santu last updated on 08/Apr/21

Determine the term independent  of x in the expansion       (((x+1)/(x^(2/3) −x^(1/3) +1)) −((x−1)/(x−x^(1/2) )) )^(10)  .

$${Determine}\:{the}\:{term}\:{independent} \\ $$$${of}\:{x}\:{in}\:{the}\:{expansion}\: \\ $$$$\:\:\:\:\left(\frac{{x}+\mathrm{1}}{{x}^{\mathrm{2}/\mathrm{3}} −{x}^{\mathrm{1}/\mathrm{3}} +\mathrm{1}}\:−\frac{{x}−\mathrm{1}}{{x}−{x}^{\mathrm{1}/\mathrm{2}} }\:\right)^{\mathrm{10}} \:. \\ $$

Answered by EDWIN88 last updated on 08/Apr/21

 [ ((x+1)/(x^(2/3) −x^(1/3) +1)) − ((x−1)/(x−x^(1/2) )) ]^(10) =   [ (((x^(1/3) +1)(x^(2/3) −x^(1/3) +1))/(x^(2/3) −x^(1/3) +1)) −(((x^(1/2) −1)(x^(1/2) +1))/(x^(1/2) (x^(1/2) −1))) ]^(10) =  [ (x^(1/3) +1)−((x^(1/2) +1)/x^(1/2) ) ]^(10) =  [ x^(1/3) −x^(−1/2)  ]^(10)  = Σ_(k=0) ^(10) C(10,k)x^(k/3) (−x^(−1/2) )^(10−k)   the term independent of x it must be  from x^((k/3)+(k/2)−5)  = x^0  , ((5k)/6) = 5 ⇒k=6  then T_6  =  (((10)),((  6)) ) (x^(1/3) )^6 (−x^(−1/2) )^4   T_6  = ((10×9×8×7)/(4×3×2×1)) (−1)^4  = 210

$$\:\left[\:\frac{{x}+\mathrm{1}}{{x}^{\mathrm{2}/\mathrm{3}} −{x}^{\mathrm{1}/\mathrm{3}} +\mathrm{1}}\:−\:\frac{{x}−\mathrm{1}}{{x}−{x}^{\mathrm{1}/\mathrm{2}} }\:\right]^{\mathrm{10}} = \\ $$$$\:\left[\:\frac{\left({x}^{\mathrm{1}/\mathrm{3}} +\mathrm{1}\right)\left({x}^{\mathrm{2}/\mathrm{3}} −{x}^{\mathrm{1}/\mathrm{3}} +\mathrm{1}\right)}{{x}^{\mathrm{2}/\mathrm{3}} −{x}^{\mathrm{1}/\mathrm{3}} +\mathrm{1}}\:−\frac{\left({x}^{\mathrm{1}/\mathrm{2}} −\mathrm{1}\right)\left({x}^{\mathrm{1}/\mathrm{2}} +\mathrm{1}\right)}{{x}^{\mathrm{1}/\mathrm{2}} \left({x}^{\mathrm{1}/\mathrm{2}} −\mathrm{1}\right)}\:\right]^{\mathrm{10}} = \\ $$$$\left[\:\left({x}^{\mathrm{1}/\mathrm{3}} +\mathrm{1}\right)−\frac{{x}^{\mathrm{1}/\mathrm{2}} +\mathrm{1}}{{x}^{\mathrm{1}/\mathrm{2}} }\:\right]^{\mathrm{10}} = \\ $$$$\left[\:{x}^{\mathrm{1}/\mathrm{3}} −{x}^{−\mathrm{1}/\mathrm{2}} \:\right]^{\mathrm{10}} \:=\:\underset{{k}=\mathrm{0}} {\overset{\mathrm{10}} {\sum}}{C}\left(\mathrm{10},{k}\right){x}^{{k}/\mathrm{3}} \left(−{x}^{−\mathrm{1}/\mathrm{2}} \right)^{\mathrm{10}−{k}} \\ $$$${the}\:{term}\:{independent}\:{of}\:{x}\:{it}\:{must}\:{be} \\ $$$${from}\:{x}^{\frac{{k}}{\mathrm{3}}+\frac{{k}}{\mathrm{2}}−\mathrm{5}} \:=\:{x}^{\mathrm{0}} \:,\:\frac{\mathrm{5}{k}}{\mathrm{6}}\:=\:\mathrm{5}\:\Rightarrow{k}=\mathrm{6} \\ $$$${then}\:{T}_{\mathrm{6}} \:=\:\begin{pmatrix}{\mathrm{10}}\\{\:\:\mathrm{6}}\end{pmatrix}\:\left({x}^{\mathrm{1}/\mathrm{3}} \right)^{\mathrm{6}} \left(−{x}^{−\mathrm{1}/\mathrm{2}} \right)^{\mathrm{4}} \\ $$$${T}_{\mathrm{6}} \:=\:\frac{\mathrm{10}×\mathrm{9}×\mathrm{8}×\mathrm{7}}{\mathrm{4}×\mathrm{3}×\mathrm{2}×\mathrm{1}}\:\left(−\mathrm{1}\right)^{\mathrm{4}} \:=\:\mathrm{210} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com