Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 18884 by Tinkutara last updated on 31/Jul/17

Determine the smallest positive integer  x, whose last digit is 6 and if we erase  this 6 and put it in left most of the  number so obtained, the number  becomes 4x.

$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{smallest}\:\mathrm{positive}\:\mathrm{integer} \\ $$$$\mathrm{x},\:\mathrm{whose}\:\mathrm{last}\:\mathrm{digit}\:\mathrm{is}\:\mathrm{6}\:\mathrm{and}\:\mathrm{if}\:\mathrm{we}\:\mathrm{erase} \\ $$$$\mathrm{this}\:\mathrm{6}\:\mathrm{and}\:\mathrm{put}\:\mathrm{it}\:\mathrm{in}\:\mathrm{left}\:\mathrm{most}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{number}\:\mathrm{so}\:\mathrm{obtained},\:\mathrm{the}\:\mathrm{number} \\ $$$$\mathrm{becomes}\:\mathrm{4x}. \\ $$

Answered by mrW1 last updated on 01/Aug/17

let′s say the number has n+1 digits  let x=[abcd...pqr6]=10u+6  let y=[6abcd...pqr]=6×10^n +u  y=4x  ⇒6×10^n +u=4(10u+6)  ⇒6(10^n −4)=39u  ⇒2(2^n ×5^n −2^2 )=13u  ⇒2^3 (2^(n−2) ×5^n −1)=13u  ⇒2^3 (25×10^(n−2) −1)=13u  ⇒u=((2^3 (25×10^(n−2) −1))/(13))  ⇒25×10^(n−2) −1=13k  the smallest n=5:  25×10^(5−2) −1=25000−1=24999=13×1923  ⇒min. u=2^3 ×1923=15384  ⇒min. x=153846    the further numbers are:  x=153846153846  x=153846153846153846  x=153846153846153846153846  ......

$$\mathrm{let}'\mathrm{s}\:\mathrm{say}\:\mathrm{the}\:\mathrm{number}\:\mathrm{has}\:\mathrm{n}+\mathrm{1}\:\mathrm{digits} \\ $$$$\mathrm{let}\:\mathrm{x}=\left[\mathrm{abcd}...\mathrm{pqr6}\right]=\mathrm{10u}+\mathrm{6} \\ $$$$\mathrm{let}\:\mathrm{y}=\left[\mathrm{6abcd}...\mathrm{pqr}\right]=\mathrm{6}×\mathrm{10}^{\mathrm{n}} +\mathrm{u} \\ $$$$\mathrm{y}=\mathrm{4x} \\ $$$$\Rightarrow\mathrm{6}×\mathrm{10}^{\mathrm{n}} +\mathrm{u}=\mathrm{4}\left(\mathrm{10u}+\mathrm{6}\right) \\ $$$$\Rightarrow\mathrm{6}\left(\mathrm{10}^{\mathrm{n}} −\mathrm{4}\right)=\mathrm{39u} \\ $$$$\Rightarrow\mathrm{2}\left(\mathrm{2}^{\mathrm{n}} ×\mathrm{5}^{\mathrm{n}} −\mathrm{2}^{\mathrm{2}} \right)=\mathrm{13u} \\ $$$$\Rightarrow\mathrm{2}^{\mathrm{3}} \left(\mathrm{2}^{\mathrm{n}−\mathrm{2}} ×\mathrm{5}^{\mathrm{n}} −\mathrm{1}\right)=\mathrm{13u} \\ $$$$\Rightarrow\mathrm{2}^{\mathrm{3}} \left(\mathrm{25}×\mathrm{10}^{\mathrm{n}−\mathrm{2}} −\mathrm{1}\right)=\mathrm{13u} \\ $$$$\Rightarrow\mathrm{u}=\frac{\mathrm{2}^{\mathrm{3}} \left(\mathrm{25}×\mathrm{10}^{\mathrm{n}−\mathrm{2}} −\mathrm{1}\right)}{\mathrm{13}} \\ $$$$\Rightarrow\mathrm{25}×\mathrm{10}^{\mathrm{n}−\mathrm{2}} −\mathrm{1}=\mathrm{13k} \\ $$$$\mathrm{the}\:\mathrm{smallest}\:\mathrm{n}=\mathrm{5}: \\ $$$$\mathrm{25}×\mathrm{10}^{\mathrm{5}−\mathrm{2}} −\mathrm{1}=\mathrm{25000}−\mathrm{1}=\mathrm{24999}=\mathrm{13}×\mathrm{1923} \\ $$$$\Rightarrow\mathrm{min}.\:\mathrm{u}=\mathrm{2}^{\mathrm{3}} ×\mathrm{1923}=\mathrm{15384} \\ $$$$\Rightarrow\mathrm{min}.\:\mathrm{x}=\mathrm{153846} \\ $$$$ \\ $$$$\mathrm{the}\:\mathrm{further}\:\mathrm{numbers}\:\mathrm{are}: \\ $$$$\mathrm{x}=\mathrm{153846153846} \\ $$$$\mathrm{x}=\mathrm{153846153846153846} \\ $$$$\mathrm{x}=\mathrm{153846153846153846153846} \\ $$$$...... \\ $$

Commented by Tinkutara last updated on 01/Aug/17

Please also explain why 25×10^(n−2)  − 1  = 13k because it should be ((13k)/8).

$$\mathrm{Please}\:\mathrm{also}\:\mathrm{explain}\:\mathrm{why}\:\mathrm{25}×\mathrm{10}^{{n}−\mathrm{2}} \:−\:\mathrm{1} \\ $$$$=\:\mathrm{13}{k}\:\mathrm{because}\:\mathrm{it}\:\mathrm{should}\:\mathrm{be}\:\frac{\mathrm{13}{k}}{\mathrm{8}}. \\ $$

Commented by mrW1 last updated on 01/Aug/17

yes, u should =((2^3 (25×10^(n−2) −1))/(13)). I had just a typo.  for u=((2^3 (25×10^(n−2) −1))/(13)) and 13 is prime  25×10^(n−2) −1 must be a multiple of 13,  otherwise u woulde be no integer.  i.e. 25×10^(n−2) −1=13k with k=integer.  then u=2^3 k.  so our task is to solve the equation  25×10^(n−2) −1=13k with n,k∈N.

$$\mathrm{yes},\:\mathrm{u}\:\mathrm{should}\:=\frac{\mathrm{2}^{\mathrm{3}} \left(\mathrm{25}×\mathrm{10}^{\mathrm{n}−\mathrm{2}} −\mathrm{1}\right)}{\mathrm{13}}.\:\mathrm{I}\:\mathrm{had}\:\mathrm{just}\:\mathrm{a}\:\mathrm{typo}. \\ $$$$\mathrm{for}\:\mathrm{u}=\frac{\mathrm{2}^{\mathrm{3}} \left(\mathrm{25}×\mathrm{10}^{\mathrm{n}−\mathrm{2}} −\mathrm{1}\right)}{\mathrm{13}}\:\mathrm{and}\:\mathrm{13}\:\mathrm{is}\:\mathrm{prime} \\ $$$$\mathrm{25}×\mathrm{10}^{\mathrm{n}−\mathrm{2}} −\mathrm{1}\:\mathrm{must}\:\mathrm{be}\:\mathrm{a}\:\mathrm{multiple}\:\mathrm{of}\:\mathrm{13}, \\ $$$$\mathrm{otherwise}\:\mathrm{u}\:\mathrm{woulde}\:\mathrm{be}\:\mathrm{no}\:\mathrm{integer}. \\ $$$$\mathrm{i}.\mathrm{e}.\:\mathrm{25}×\mathrm{10}^{\mathrm{n}−\mathrm{2}} −\mathrm{1}=\mathrm{13k}\:\mathrm{with}\:\mathrm{k}=\mathrm{integer}. \\ $$$$\mathrm{then}\:\mathrm{u}=\mathrm{2}^{\mathrm{3}} \mathrm{k}. \\ $$$$\mathrm{so}\:\mathrm{our}\:\mathrm{task}\:\mathrm{is}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{25}×\mathrm{10}^{\mathrm{n}−\mathrm{2}} −\mathrm{1}=\mathrm{13k}\:\mathrm{with}\:\mathrm{n},\mathrm{k}\in\mathbb{N}. \\ $$

Commented by mrW1 last updated on 01/Aug/17

certainly you can solve this question  directly like this:           abcdef6                      ×4  −−−−−−−−−   =    6abcdef  ⇒f=4  ⇒e=8  ⇒d=3  ⇒c=5  ⇒b=1  ⇒a=6 ! that′s right. ⇒ our first number is 153846  just go on with these steps if you want to get the  next suitable number.

$$\mathrm{certainly}\:\mathrm{you}\:\mathrm{can}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{question} \\ $$$$\mathrm{directly}\:\mathrm{like}\:\mathrm{this}: \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{abcdef6} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:×\mathrm{4} \\ $$$$−−−−−−−−− \\ $$$$\:=\:\:\:\:\mathrm{6abcdef} \\ $$$$\Rightarrow\mathrm{f}=\mathrm{4} \\ $$$$\Rightarrow\mathrm{e}=\mathrm{8} \\ $$$$\Rightarrow\mathrm{d}=\mathrm{3} \\ $$$$\Rightarrow\mathrm{c}=\mathrm{5} \\ $$$$\Rightarrow\mathrm{b}=\mathrm{1} \\ $$$$\Rightarrow\mathrm{a}=\mathrm{6}\:!\:\mathrm{that}'\mathrm{s}\:\mathrm{right}.\:\Rightarrow\:\mathrm{our}\:\mathrm{first}\:\mathrm{number}\:\mathrm{is}\:\mathrm{153846} \\ $$$$\mathrm{just}\:\mathrm{go}\:\mathrm{on}\:\mathrm{with}\:\mathrm{these}\:\mathrm{steps}\:\mathrm{if}\:\mathrm{you}\:\mathrm{want}\:\mathrm{to}\:\mathrm{get}\:\mathrm{the} \\ $$$$\mathrm{next}\:\mathrm{suitable}\:\mathrm{number}. \\ $$

Commented by Tinkutara last updated on 01/Aug/17

Thank you very much mrW1 Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{mrW1}\:\mathrm{Sir}! \\ $$

Commented by mrW1 last updated on 01/Aug/17

I tried to use an equation to solve the  question, because the question can  be generalised:  Find such numbers when we erase their last  digit and put it before the first digit,  the new number will be m times as  the original number.  m can be 2 til 9.

$$\mathrm{I}\:\mathrm{tried}\:\mathrm{to}\:\mathrm{use}\:\mathrm{an}\:\mathrm{equation}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{the} \\ $$$$\mathrm{question},\:\mathrm{because}\:\mathrm{the}\:\mathrm{question}\:\mathrm{can} \\ $$$$\mathrm{be}\:\mathrm{generalised}: \\ $$$$\mathrm{Find}\:\mathrm{such}\:\mathrm{numbers}\:\mathrm{when}\:\mathrm{we}\:\mathrm{erase}\:\mathrm{their}\:\mathrm{last} \\ $$$$\mathrm{digit}\:\mathrm{and}\:\mathrm{put}\:\mathrm{it}\:\mathrm{before}\:\mathrm{the}\:\mathrm{first}\:\mathrm{digit}, \\ $$$$\mathrm{the}\:\mathrm{new}\:\mathrm{number}\:\mathrm{will}\:\mathrm{be}\:\mathrm{m}\:\mathrm{times}\:\mathrm{as} \\ $$$$\mathrm{the}\:\mathrm{original}\:\mathrm{number}. \\ $$$$\mathrm{m}\:\mathrm{can}\:\mathrm{be}\:\mathrm{2}\:\mathrm{til}\:\mathrm{9}. \\ $$

Commented by Tinkutara last updated on 01/Aug/17

Which equation? Can you give its  derivation?

$$\mathrm{Which}\:\mathrm{equation}?\:\mathrm{Can}\:\mathrm{you}\:\mathrm{give}\:\mathrm{its} \\ $$$$\mathrm{derivation}? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com