Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 1766 by Rasheed Ahmad last updated on 18/Sep/15

Determine     (i)  lim_(a→∞)  a^(1/a)            (ii) lim_(a→0)  a^(1/a)

$${Determine}\: \\ $$$$\:\:\left({i}\right)\:\:\underset{{a}\rightarrow\infty} {{lim}}\:{a}^{\frac{\mathrm{1}}{{a}}} \:\:\:\:\:\:\:\:\:\:\:\left({ii}\right)\:\underset{{a}\rightarrow\mathrm{0}} {{lim}}\:{a}^{\frac{\mathrm{1}}{{a}}} \\ $$

Answered by 123456 last updated on 19/Sep/15

L=lim_(x→+∞)  x^(1/x)               (→∞^0 )  ln L=lim_(x→+∞) (1/x)ln x    (→0∞)  ln L=lim_(x→+∞) ((ln x)/x)         (→(∞/∞)) L′hospital  ln L=lim_(x→+∞) (1/x)=0  L=1  −−−−−−−−−−−  D=lim_(x→0^+ )  x^(1/x)   ln D=lim_(x→0^+ ) (1/x)ln x      (→+∞×−∞)  ln D=−∞  D=0

$$\mathrm{L}=\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\:{x}^{\frac{\mathrm{1}}{{x}}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\rightarrow\infty^{\mathrm{0}} \right) \\ $$$$\mathrm{ln}\:\mathrm{L}=\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{x}}\mathrm{ln}\:{x}\:\:\:\:\left(\rightarrow\mathrm{0}\infty\right) \\ $$$$\mathrm{ln}\:\mathrm{L}=\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\frac{\mathrm{ln}\:{x}}{{x}}\:\:\:\:\:\:\:\:\:\left(\rightarrow\frac{\infty}{\infty}\right)\:\mathrm{L}'\mathrm{hospital} \\ $$$$\mathrm{ln}\:\mathrm{L}=\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{x}}=\mathrm{0} \\ $$$$\mathrm{L}=\mathrm{1} \\ $$$$−−−−−−−−−−− \\ $$$$\mathrm{D}=\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:{x}^{\frac{\mathrm{1}}{{x}}} \\ $$$$\mathrm{ln}\:\mathrm{D}=\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{\mathrm{1}}{{x}}\mathrm{ln}\:{x}\:\:\:\:\:\:\left(\rightarrow+\infty×−\infty\right) \\ $$$$\mathrm{ln}\:\mathrm{D}=−\infty \\ $$$$\mathrm{D}=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com